l.)

Check for
Updates

Session Key Distribution Made Practical for

CAN and CAN-FD Message Authentication

Yang Xiao Shanghao Shi Ning Zhang
Virginia Tech Virginia Tech Washington University in St. Louis
xiaoy@vt.edu shanghaos@vt.edu zhang.ning@wustl.edu
Wenjing Lou Y. Thomas Hou
Virginia Tech Virginia Tech
wjlou@vt.edu thou@vt.edu
ABSTRACT KEYWORDS

Automotive communication networks, represented by the CAN
bus, are acclaimed for enabling real-time communication between
vehicular ECUs but also criticized for their lack of effective security
mechanisms. Various attacks have demonstrated that this secu-
rity deficit renders a vehicle vulnerable to adversarial control that
jeopardizes passenger safety. A recent standardization effort led
by AUTOSAR has provided general guidelines for developing next-
generation automotive communication technologies with built-in
security mechanisms. A key security mechanism is message au-
thentication between ECUs for countering message spoofing and
replay attack. While many message authentication schemes have
been proposed by previous work, the important issue of session key
establishment with AUTOSAR compliance was not well addressed.
In this paper, we fill this gap by proposing an AUTOSAR-compliant
key management architecture that takes into account practical re-
quirements imposed by the automotive environment. Based on
this architecture, we describe a baseline session key distribution
protocol called SKDC that realizes all designed security functionali-
ties, and propose a novel secret-sharing-based protocol called SSKT
that yields improved communication efficiency. Both SKDC and
SSKT are customized for CAN/CAN-FD bus deployment. We imple-
mented the two protocols on commercial microcontroller boards
and evaluated their performance with hardware experiment and
extrapolation analysis. The result shows while both protocols are
performant, SSKT achieves superior computation and communica-
tion efficiency at scale.

CCS CONCEPTS

« Security and privacy — Key management; Security proto-
cols; Embedded systems security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7-11, 2020, Austin, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8858-0/20/12...$15.00
https://doi.org/10.1145/3427228.3427278

681

Automotive communication networks, CAN, CAN-FD, message
authentication, key distribution, secret sharing

ACM Reference Format:

Yang Xiao, Shanghao Shi, Ning Zhang, Wenjing Lou, and Y. Thomas Hou.
2020. Session Key Distribution Made Practical for CAN and CAN-FD Mes-
sage Authentication. In Annual Computer Security Applications Conference
(ACSAC 2020), December 7-11, 2020, Austin, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3427228.3427278

1 INTRODUCTION

Modern vehicles rely on a fleet of on-board microcontroller mod-
ules, known as Electronic Control Units (ECUs), for sensor data
processing and real-time subsystem control. These ECUs, connected
by one or more automotive communication networks, exchange
control information with each other through standardized com-
munication protocols. The Controller Area Network protocol [31],
commonly known as the CAN bus protocol, is the de facto commu-
nication standard for safety-critical subsystems in a modern vehicle.
CAN-FD [32] is the official extension of CAN which supports higher
transmission bit rate and longer data payloads.

These automotive communication protocols are designed with
the aim of optimizing communication efficiency, but often lack
modern security protections such as message authentication. Take
CAN for example, it adopts a broadcast-and-subscribe messaging
paradigm wherein messages carry no sender or receiver informa-
tion except for the message ID. Any message sent by any ECU
reaches all ECUs on the bus. While an ECU is expected to only
read the messages it subscribes, due to the lack of authentication
of message source or receiver, a malicious ECU can legally read all
messages and inject new messages with arbitrary ID and payload.
Various attacks have demonstrated that this vulnerability can be
exploited for malicious control of the vehicle behavior [19, 25] and
reverse engineering of ECU messaging patterns [20, 29, 42]. These
attacks are generally achieved by injecting malicious messages and
analyzing existing messages through the OBD-II port or an exposed
bus interface.

Recognizing the pressing need for securing the control network,
industry-wide standardization effort, led by the AUTOSAR consor-
tium, has provided architectural guidelines for in-vehicle security
mechanisms that counter the message-related attacks. The AU-
TOSAR specification of Secure Onboard Communication (SecOC)
[2] suggests mandatory message authentication, as well as the using


https://www.acsac.org/2020/submissions/papers/artifacts/
https://doi.org/10.1145/3427228.3427278
https://doi.org/10.1145/3427228.3427278
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3427228.3427278&domain=pdf&date_stamp=2020-12-08

ACSAC 2020, December 7-11, 2020, Austin, USA

message counter for replay attack resistance. Specially, it stipulates
that message authentication shall be performed on group basis,
i.e., all subscribing nodes of a message ID need to share a secret
key which is used for the authentication of that message ID. This
group-based authentication paradigm guarantees a practical level
of security and also preserves the efficiency of group messaging
associated with the broadcast nature of in-vehicle buses.

However, key establishment in AUTOSAR SecOC receives little
attention. Two well-received AUTOSAR-compliant CAN message
authentication schemes [27, 30] assume that a long-term secret key
for each CAN message ID has been pre-distributed to the tamper-
proof memory region of the subscribing ECUs. [27] directly applies
the long-term keys to message authentication, while [30] further
configures that session keys shall be derived from the long-term
keys and used only in a short term (eg., vehicle start-up to shut-
down). Using session keys is a good security practice for enabling
replay attack resistance and forward secrecy. However, the session
key derivation mechanism in [30] requires bulk storage of message-
specific long-term keys in ECU’s tamper-proof memory, which can
be a constraining factor when the number of message IDs is large. In
comparison, [38] adopts centralized key management in that each
ECU only needs to share one key-encryption key with the trusted
key server, and session keys for group message authentication are
distributed by the key server to ECUs in a key distribution center
(KDC) style. Centralized key management is a practical choice
for in-vehicle networks, wherein the connected ECUs are static
in place and limited in quantity. Nonetheless, the KDC-style key
establishment requires key distribution to be done one ECU at a
time, the communication overhead thereof can be significant for
large bus networks.

Our Contribution We tackle the problem of efficient session
key establishment for message authentication in automotive com-
munication networks. We identify four practical requirements for
key establishment in automotive environment: 1) lightweight cryp-
tography, 2) communication efficiency, 3) AUTOSAR-compliant
security, and 4) flexibility with on-demand ECUs. To fulfill these
goals, we formulate a centralized key management architecture
and opt for key distribution (in contrast to key agreement), which
is inline with prior wisdom [38, 43] that adopted centralized key
management for efficiency purposes. Specifically, we introduce a
central key server (KS) for managing the system epoch counter and
the generation of session keys for different messages. KS shares a
long-term secret key with each ECU called ECU key, which will be
used in the distribution of session keys. KS also accommodates the
session key requests from on-demand ECUs when they switch on
during normal vehicle operation.

Based on this architecture, we focus on CAN and CAN-FD bus
and construct session key distribution protocols in two steps. First,
we describe a baseline KDC-style protocol, dubbed SKDC, wherein
KS uses ECU keys to encrypt a session key and delivers it to the
corresponding ECUs one by one. We take into account the nuances
in CAN and CAN-FD frame structure and key confirmation. After-
wards, we propose a new session key distribution protocol, named
SSKT, which achieves the same functionalities while yielding sig-
nificantly improved communication efficiency. SSKT employs an
adapted version of the secret-sharing-based key transfer primitive
(SKT) [13] for the delivery of session keys. SSKT takes advantage

682

Yang Xiao, Shanghao Shi, Ning Zhang, Wenjing Lou, and Y. Thomas Hou

of the broadcast nature of the CAN/CAN-FD bus in that all ECUs
receive the materials for recovering a subscribed message session
key from KS at the same time and start recovering this key simulta-
neously. Specially, the key recovery procedure relies on polynomial
interpolation in a finite field, wherein the most time-consuming
steps—computing Lagrangian coefficients—can be pre-computed
for achieving optimal time efficiency.

We provide a proof-of-concept implementation of the proposed
SKDC and SSKT protocols on commercial microcontroller boards
commonly used for vehicular ECU emulation. We built a CAN bus
test platform for validation and feasibility evaluation and performed
extrapolated analyses with performance benchmarks. The result
shows that SSKT achieves better computation and communication
efficiency at scale, at the cost of increased memory footprint.

In summary, we make the following contributions:

e We propose a practical key management architecture for
message authentication in automotive communication net-
work which is compliant with AUTOSAR specification.
Based on the architecture, we propose a baseline KDC-style
key distribution protocol called SKDC, and a secret-sharing-
based protocol called SSKT which yields improved communi-
cation efficiency. Both protocols are customized for session
key establishment in CAN and CAN-FD bus.

e We provide an proof-of-concept implementation of SKDC
and SSKT and evaluate their performance with hardware
experiment and extrapolation analysis. The result demon-
strates the feasibility of both protocols as well as SSKT’s
advantage in computation and communication efficiency at
scale.

2 BACKGROUND
2.1 Automotive Communication Network

Modern automobile development has seen the increasing complex-
ity of in-vehicle electrical and electronic systems. A passenger car
nowadays has up to 80 electronic control units (ECU) connected
by one or more automotive communication networks [9]. An auto-
motive communication network typically consists of three layers
of components: the application-specific ECU, the data link layer,
and the physical layer [37]. The data link layer specifies the frame
structure and translates ECU messages into logical bits. It also en-
codes certain message processing rules that essentially realize a
communication protocol. The physical layer specifies the underly-
ing wire technology and also includes an medium access unit that
converts logical bits into physical signals, and vice versa.

Widely used automotive communication networks include the
Controller Arean Network (CAN) [31], Local Interconnect Network
(LIN) [7], FlexRay [24], and Media Oriented Systems Transport
(MOST) [8]. They are purposed for different in-vehicle electronic
systems and utilize different physical wire technologies. They are
all bus networks and bridged by a central gateway that also serves
as a message outlet for vehicle diagnostics [44]. In this work we
address the security issues of CAN and its extension CAN-FD, as
currently most safety-critical ECUs such as engine, transmission,
and ABS control units are connected by a CAN bus [19].



Session Key Distribution Made Practical for CAN and CAN-FD Message Authenticat

2.2 CAN and CAN-FD Basics

CAN was proposed by Robert Bosch GmbH in 1986 as an automo-
tive communication bus, with the latest version (2.0) released in
1991 [31]. CAN-FD, wherein FD stands for Flexible Data-rate, was
released by Bosch in 2012 as a CAN extension [32]. Bosch’s specifi-
cation on CAN and CAN-FD are standardized in ISO 11898-1 as data
link layer protocols [17], while the physical layer is independently
standardized in ISO 11898-2/3 [16, 18].

Frame Format ECUs communicate via message frames. There
are four types of message frames, namely data frame, remote frame,
error frame, and overload frame, of which the data frame is the
default type for data transmission. The data frame formats of CAN
and CAN-FD are illustrated in Figure 1. It should be noted that
message frames carry no sender or receiver information, while the
base ID and extended ID fields comprise of the message identifier.
One major difference between a CAN data frame and a CAN-FD
data frame lies in the maximum size of data payload. CAN supports
up to 8 bytes of data and while CAN-FD supports up to 64 bytes.
This extended payload capacity allows a CAN-FD data frame to
better integrate standard cryptographic functions.

Broadcast Bus Any message sent is broadcast to the bus. Each
ECU keeps a message subscription list on what messages to read,
enforced by a filter and mask mechanism on the message identifier.
Only one message can be broadcast at a time, during which all ECUs
are synchronized to receive every bit. One key difference between
CAN and CAN-FD is that the latter’s medium access unit allows an
adjustable bit rate for the transceiving of the DLC, data and CRC
fields; bit rate for other fields is consistent with the coexisting CAN
protocol. This makes CAN-FD messages backward-compatible with
CAN while enabling faster transmission of useful data.

Message Arbitration The collision of messages are detected
and resolved through the message arbitration mechanism. The ar-
bitration field contains the message ID, which is binary-encoded in
a way that a message of higher priority has a lower ID value. The
logic bit “0” and “1” are defined as “dominant” and “recessive”, corre-
sponding to high and low voltages in the physical layer respectively.
The start-of-frame bit (SOF) is defined as “0” and after which all
ECUs are synchronized for bit-wise transmission and detection on
the bus. As a result, a message frame with a lower message ID has
more preceding logic zeros and automatically overrides messages
with higher message IDs. ECUs that have detected the transmission
of a higher-priority message frame during message arbitration will
wait until the current frame finishes before sending its message
frame.

2.3 CAN and CAN-FD Message Authentication

The current CAN and CAN-FD specifications have limited security
measures. Due to the broadcast nature of the bus network and
frame format, a receiver ECU needs to pick messages based on
message IDs, while with no assurance on authenticity of the sender
or integrity of the message. An adversary can read all messages
and inject arbitrary messages through exposed bus interfaces, such
as the OBD-II port or a compromised wired/wireless interface of an
ECU. This vulnerability allows attackers to maliciously control of
the vehicle behavior [19, 25] and reverse-engineer ECUs [20, 29, 42].

ion

683

ACSAC 2020, December 7-11, 2020, Austin, USA

' i Control;

Arbitration Field Field | Data Field CRC Field
S (optional) CAN: < 8 bytes | CAN: 15 bits fl o |E| |
O | Base ID Extended ID DLC | CAN-FD: CAN-FD: C|O|F
F1 11 bits 18 bits 4 bits | < 64 bytes 15,17,21 bits || K[ F[S

CAN-FD: flexible bit rate
for this portion

Figure 1: Data frame formats of CAN and CAN-FD.

AUTOSAR Specification To provide better security in auto-
motive environment, the industry-wide consortium AUTOSAR
recommends using authentication mechanisms for secure com-
munication. The AUTOSAR SecOC specification [2] defines two
authentication functionalities for normal message-based commu-
nication: entity authentication and message authentication. The
former validates the sender identity of the ensuing communica-
tion, while the latter ensures the sender of a message is entitled
to send this message (i.e., source authenticity) as well as message
integrity. For current automotive communication buses, entity au-
thentication would require pairwise ECU secret keys or a dedicated
authentication server node, while message authentication can be
conveniently integrated into regular messaging with limited cryp-
tographic overhead. Specifically, AUTOSAR SecOC provides three
practical guidelines for message authentication: 1) Authentication is
associated with message groups. That is, a message authentication
code (MAC) of a regular message proves the message sender is a
valid subscriber of the message ID. 2) A counter is included in MAC
computation for message freshness and replay attack resistance.
3) For cryptographic strength, 128-bit secret keys and MACs of at
least 64 bits are recommended.

Several AUTOSAR-compliant message authentication schemes
have been proposed for CAN bus [27, 30, 38]. Due to the 64-bit
payload limit of a CAN data frame, they all resort to sending the
MAC of a message in a subsequent data frame, though they differ in
the choice of MAC algorithm and placement of message counters.
There were also numerous CAN message authentication schemes
proposed prior to AUTOSAR. These works contain valuable lessons
but are not fully compliant with the three practical guidelines pro-
vided by AUTOSAR SecOC. Interested readers are referred to §9
for a brief review on these legacy schemes.

2.4 Message Authentication Key Management

Noticeably missing from AUTOSAR specification is the establish-
ment of authentication keys. vatiCAN [27], the first known AUTOSAR-
compliant CAN message authentication mechanism, assumes the
message-specific keys are pre-distributed to ECUs during vehicle
assembly. These keys are used for message authentication through-
out the vehicle’s lifetime. However, using long-term keys directly
for authentication is not a good security practice, since the possible
compromise of a long-term authentication key will jeopardize the
operation of all ECUs that hold this key. Moreover, key storage
can be challenging if a resource-limited vehicular ECU needs to
subscribe to a large amount of message IDs.



ACSAC 2020, December 7-11, 2020, Austin, USA

Using Session Keys A more secure practice is to dynamically
generate keys for message authentication for every new communi-
cation session. These session keys need to be established in ECUs ac-
cording to their message subscription profiles. Legacy schemes such
as CANAuth [39], LiBra-CAN [11], and MaCAN [14] have adopted
session keys, though they do not conform to AUTOSAR’s guidance
on message ID-based grouping. LEIA [30], the first AUTOSAR-
compliant proposal that adopts session keys, assumes message-
specific long-term keys are pre-distributed to ECUs (same as vati-
CAN), which together with the system epoch number are used for
deriving short-term session keys for every vehicle start-up. While
LEIA’s session key derivation mechanism yields minimal communi-
cation and computation overhead, it risks the same long-term key
compromise and storage problem as vatiCAN does since each ECU
stores the long-term key for every subscribed message ID.

Alternatively, session keys can be distributed in a centralized
manner. VulCAN [38] employs a key server to generate session
keys and maintain the system epoch in a KDC-style. The key server
and each ECU share a unique long-term key-encryption key (KEK).
Every session key is then delivered to the subscribing ECUs sepa-
rately. Compared to LEIA, this centralized scheme saves the precious
tamper-resistant memory space at every ECU. It also enables the
implementation of other useful security mechanisms, including key
confirmation and ECU entity authentication, which can be used for
system liveness detection. Partially for this reason, our proposed
system architecture also adopts the centralized paradigm.

2.5 Secret-sharing-based Key Establishment

Alternative to encryption-based methods, secret key can also be
delivered via secret sharing. Here we are interested in one particular
paradigm of secret sharing called (n, t)-threshold scheme: a dealer
splits the secret into n shares and gives one share to each of the n
participants. Any combination of ¢ or more shares can be used to
reconstruct the secret.

The SKT Primitive The secret sharing-based key transfer prim-
itive (SKT) was proposed by Harn and Lin [13] in 2010 and is built
upon Shamir’s secret sharing [34]. SKT assumes t members wish
to establish a group key with the help of a key generation cen-
ter (KGC). KGC shares a long-term secret pair (x;,y;) with each
member i. In the beginning, KGC generates a secret key sk and
each member i sends a random offset R; to KGC. KGC generates a
degree-t polynomial f(x) using the ¢ + 1 points: {(x;,y; ® R;)} e[y
and (0, sk), wherein ® means XOR. KGC then picks ¢ auxiliary ran-
dom points {P;};¢[] on f(x) (different from any (x;, y;) or (0, sk))
and broadcasts them to group members. Group member i recovers
the polynomial f(x) and the group secret key sk via polynomial
interpolation on the ¢ + 1 points (aka. secret shares): the public
{P1}i¢[+) and the confidential (x;,y; ® R;). All arithmetic opera-
tions are performed in Z;, (i.e., modulo w). Compared to KDC-style
schemes, SKT features an advantage in communication efficiency:
KGC only needs to broadcast the auxiliary points {P;};¢[;] once
and all members in the designated group can recover the group key
simultaneously.

We note that there are other secret-sharing-based schemes for
key establishment. Readers are referred to §9 for a brief review.

684

Yang Xiao, Shanghao Shi, Ning Zhang, Wenjing Lou, and Y. Thomas Hou

3 SYSTEM ARCHITECTURE

3.1 Network Model

We consider a CAN/CAN-FD bus network of N ECUs with M mes-
sage identifiers that need authentication service. We assume N < 28
and M < 218 so that the Base ID and Extended ID fields of a CAN or
CAN-FD data frame can provide sufficient space to encode ECU ID
and message ID respectively. Every ECU is preassigned an ECU ID
EID; € {0,1}%,Vi € [N] ([N] denotes {1,2, ..., N}). Every message
identifier that needs authentication service is preassigned a mes-
sage ID for key assignment purposes: MID; € {0, 1}18,vi € [M].
Each ECU i has a determined subscription list SL;, which contains
MIDs of messages it will send and receive with MAC.

System Goal The goal is to establish session keys for message
authentication in ECUs at the start of every automotive commu-
nication session. We define a communication session as the period
from vehicle start-up to shut-off, in consistency with [27, 30, 38].
For every new session, each MIDj is assigned a random 128-bit
session key sk; for message authentication. All ECUs that subscribe
to a common MID need to get a session key for that MID. In other
words, for any (a, b, j) tuple that satisfies MID; € SL, N SLp, ECU
a and b need to share the session key sk;.

Threat Model The adversary eavesdrops all CAN/CAN-FD
messages transmitted in the bus and can inject messages with
arbitrary message ID and payload. The adversary can replay any
previously eavesdropped message. The adversarial goal is to acquire
the session keys for the subsequent authenticated communication.
And in the case that an ECU is compromised, the adversary can
only obtain the victim’s session keys for the current session.

3.2 Practical Considerations on Session Key
Establishment

In addition to the basic functionality and compatibility with CAN/CAN-

FD bus, we identify four practical requirements for a session key
establishment protocol to be deployed in automotive environments:

¢ R1: Lightweight Cryptography Vehicular ECUs are gen-
erally resource-constrained. The computational burden of
each ECU should be limited.

e R2: Communication Efficiency Due to the underlying
bus network and the arbitration process of CAN/CAN-FD,
only one message can be broadcast at a time. The overall
message complexity should be controlled so the protocol
finishes in a short time.

e R3: AUTOSAR-compliant Security The protocol should
use 128-bit secret keys and 64-bit MACs as are recommend by
AUTOSAR SecOC [2]. It should be resistant to replay attacks
in that an incremental system epoch shall be instantiated at
all ECUs for every new session.

e R4: Flexibility with On-demand ECU Not all ECUs are
on at vehicle start-up. ECUs that switch on on-demand dur-
ing driving should obtain its subscribed sessions swiftly with
minimal impact on normal operation.

We remark that R1 effectively rules out public key cryptography,
which involves long-term storage of lengthy asymmetric keys and
cumbersome computation at ECUs. Meanwhile, the straightforward
key derivation method adopted by LEIA [30] is also not favorable



Session Key Distribution Made Practical for CAN and CAN-FD Message Authentication

ECU 1
(Engine)
Epoche; < e

ECU key ek,
SL, = {MID,, MID,}

Get session keys sk, sk,

ECU 2
(Transmission)

Epoche, « e
ECU key ek,
SL, = {MID,,MID,}

Get session keys sk, sk,

Link & Physical layer

Link & Physical layer

CAN/_C_A[\‘:FD Session key distribution & epoch o
bus synchronization & ECU entity authentication
Link & Physical layer

KS
(Gateway)

Link & Physical layer

ECU 3
(ABS)

Epoch e
ECU keys: {ek,, ek,, ek3}
REL, RML

G, ={1,2,3},G, = {1,2}

Gen. session keys sk, sk,

Epoche; « e
ECU key ek3
SL; = {MID;}

Get session key sk

Figure 2: An example of the proposed system architecture.
ECU 1, 2,3 subscribing MID; and ECU 1, 2 subscribing MID,.
ECU 1, 2,3 all switch on from the session onset.

since it requires the long-term storage of various message-specific
master keys. R2 rules out classical key agreement protocols which
typically yield O(N?) message complexity. The system epoch value
imposed by R3 can be used in the ensuing message authentication
as the session indicator. R3 and R4 entail a trusted entity to manage
the system epoch value and keep records of the on-demand ECUs.
Moreover, safety-critical vehicle operations should be blocked until
session keys are established. For gasoline and diesel vehicles, we
recommend the establishment of session keys be completed before
engine ignition. For electric vehicles, we recommend it be done
before unblocking vehicle motion. For these reasons, we consider
centralized key distribution by a trusted entity the best option for
session key establishment in automotive communication networks.

3.3 A Key Server-based Architecture

We introduce a trusted entity called Key Server (KS) to generate and
distribute symmetric session keys to ECUs in a centralized manner.
The inclusion of KS is a practical design choice for CAN and CAN-
FD buses for two reasons. First, only one message can be broadcast
at a time in the bus, and all ECUs are synchronized to bits during
message arbitration. This allows one entity to distribute information
in an publicly observable manner. Second, vehicular ECUs have
fixed quantity and are placed in fixed locations, which provides
convenience for centralized management such as key distribution
and ECU identity authentication. In practice, KS can be instantiated
on an existing ECU, such as the gateway ECU enhanced with a
powerful processor. We also assume KS can block engine ignition
and vehicle motion until session key distribution is completed.
Figure 2 shows an example of the proposed system architecture.
Each ECU i shares a 128-bit long-term ECU key ek; and its subscrip-
tion list SL; with KS, which are stored in tamper-resistant memory
regions. ek;’s are used in the session key distribution protocol as
well as optional ECU entity authentication. Epochs are used for
resisting replay attacks, in accordance to AUTOSAR specification.

685

ACSAC 2020, December 7-11, 2020, Austin, USA

Specially, a 64-bit system epoch e is managed by KS. We assume
KS tracks the highest local epoch e; of any ECU i it has observed
during normal communication, and keeps the system epoch e up-
dated to such e;. For a new session, KS increments e and starts
the session key distribution protocol. e should be included in ev-
ery ensuing protocol message. All ECUs should synchronize local
epoch to e, while individual e; may diverge during the ensuing
normal communication [30, 38]. Moreover, KS stores a required
ECU list (REL) and a required message list (RML). REL specifies
the ECUs that require message authentication from session onset
(in contrast to on-demand ECUs). Correspondingly, RML specifies
the message IDs that require the assignment of session keys from
session onset. We further define G; as the group of ECUs that sub-
scribe to MID; and are required to start from the onset. That is,
G; = {Vi|MID; € SL; and i € REL}. The size of G; is denoted ¢;.

Based on the KS-based architecture, we proceed to construct
the session key distribution protocol for CAN and CAN-FD bus.
The baseline, named SKDC, is a KDC-style protocol which realizes
functionalities including session key distribution and confirmation.
The second protocol, named SSKT, achieves the same functionalities
but yields higher communication efficiency.

4 BASELINE: THE SKDC PROTOCOL

A classical KDC relies on pre-shared key-encryption keys (KEK)
to distribute temporary keys in encrypted channel. In SKDC, KS
serves the KDC role and uses the pre-shared long-term ECU keys as
KEKs. To distribute session key sk, for each ECU i that subscribes
MIDj, KS encrypts sk; with ek; and delivers it to ECU i. To fit
into CAN/CAN-FD’s message framework, we define three special
protocol messages: key delivery KD_MSG, confirmation CO_MSG,
and request message RE_MSG, with formats specified in Figure 3.
MAC,, (-) is a 64-bit truncated MAC and can be derived using
standard HMAC or keyed hash. The encryption function Enc,(-)
can be a standard symmetric-key encryption scheme such as AES.

4.1 Protocol Workflow

For a new session, the SKDC protocol proceeds as follows:

e Phase 1: Key Generation KS generates random 128-bit
session keys for all M message IDs: {sk1, skz, ..., skys} and
increments e.

e Phase 2-1: Key Delivery For every message j € RML and
each ECU i € Gj, KS sends out KD_MSG(, j, e) onto the
bus. The message payload contains the epoch e, ciphertext
of session key sk; encrypted with ek;, as well as a MAC for
the arbitration field and the session key sk;, which will be
used by ECU i for authenticity and integrity check.

e Phase 2-2: Key Recovery When ECU i receives message
KD_MSG(i, j, e) from the bus and j € SL;, it obtains the
epoch e and verifies e > e; if for the first time or e = e;
otherwise. It then decrypts sk; with ek;. After validating the
received information with the MAC, ECU i accepts sk; as the
session key for MID;. It updates e; to e if e > e;. If validation
fails, ECU i sends out a RE_MSG to request KS to resend the
KD_MSGs.



ACSAC 2020, December 7-11, 2020, Austin, USA

KD_MSG(i, j, €) : Data (256 bits) i

I001||E1D IMID Ie||Encekl(sk)||MAC5kl(001||EID||MID||e||sk)I

CO_MSG(Y) ! Data (128 bits) i

I010||E1D Iel||MACek (010]|EID;||e;|xp) I

RE_MSG(i) ! Data (128 bits) i

I011||E1Di I e; || MAC, (011]|EID;||e;) I

Figure 3: Protocol message formats of SKDC.

e Phase 3: Confirmation Once ECU i obtains all subscribed

session keys specified in SL;, it proceeds to generate a ek;-
keyed MAC as a digest of the session keys. In Figure 3 we
use k; to denote the concatenation of the session keys. The
MAC is sent out via CO_MSG(i).
When KS receives CO_MSG(i), it verifies the received e; =
e and validates e; and the session keys with the MAC. (If
multiple ECUs attempt to send CO_MSG at the same time,
the order is regulated by the arbitration process, i.e., ECU
with the lowest EID gets to send first.)

We remark that a CO_MSG also fulfills ECU entity authentication.
An execution example of SKDC in illustrated in Figure 4. There
are several practical considerations for deploying SKDC in CAN
and CAN-FD buses. For CAN-only bus, the payload of KD_MSG
and CO_MSG will exceed the 64-bit limit and thus needs to be
transmitted in break-out messages. According to previous CAN
authentication schemes [27, 30, 38], the break-out messages can
employ a special encoding rule in the arbitration field to maintain a
consistent priority level, for instance, each subsequently increments
by one. Moreover, to accelerate overall protocol execution, and since
we assume KS has a powerful processor which is significantly faster
than normal ECU processors, KS can pre-compute the key digests
as well as MACs of the CO_MSGs that it expects to receive right
after sending out all KD_MSGs.

For an on-demand ECU that does not start from the session onset
but switches on during normal operation, it sends out a RE_MSG
and expect KD_MSGs from KS, then performs the same Phase-2
operations described in the workflow. Confirmation is not required
for on-demand ECUs as the vehicle is already in operation mode.

4.2 Security Analysis

We analyze the security of SKDC from three aspects: session key
correctness, session key and ECU key confidentiality, ECU entity
authentication and liveness.

First, session key correctness means the session key received
by an ECU is indeed the one generated by KS for the current
session. This is equivalent to the authenticity and integrity of
KD_MSG(i, j, e), which contains a MAC computed with ECU key
ek; only known to KS and ECU i. Without knowing ek;, the attacker
needs to forge the message by coinciding a MAC and send it to the
ECU, which yields expected 23 guesses to succeed. And this should
be done before the ECU receives the authentic KD_MSG(i, j, e) from
KS. The incremental epoch value ensures that the attacker needs to
start over for every new session, fulfilling replay attack resistance.

686

Yang Xiao, Shanghao Shi, Ning Zhang, Wenjing Lou, and Y. Thomas Hou

KS

—

1. Generate random
session keys {sk;}
2. Increment e

N

ECU 1,2,

ECU i on receiving

KD_MSG(i, j, e) and
MID; € SL;:

1. Verify e > e; (if 1%t
time)ore = ¢;

2. Decrypt and get sk;
3. Validate sk; with
MAC > accept sk;

4. e; « e (if 1t time)

//——LL;

KD_MSG(1,1,e)
KD_MSG(2,1,€)

For all j € RML:
Foralli € G;:

Send out encrypted
skj in KD_MSG(i, j, e)

KD_MSG(*, 1,e)

KD_MSG(1,2,€)

KD_MSG(2,2, €)

On receiving

CO_MSG(i): CO_MSG(1)
1. Verifye; = e ) ECU i after getting all
2. Confirm ECU i’s CO_MSG(2) required session keys:
identity and session Compute a digest of

and s CO_MSG P g
key receipt with MAC - O received session keys
Turn on vehicle engine

as CO_MSG(i)’s MAC
or motor if all ECUs in \

\ REL confirmed /

Figure 4: Example workflow of SKDC. Message subscription
follows Fig. 2.

Second, since session key sk; is encrypted with the ECU key
ek; in KD_MSG(i, j, e), its confidentiality is equivalent to that of
ek;. We note that in CO_MSG(i) and RE_MSG(i), ECU key ek; is
used to generate the MAC. To uncover ek;, the attacker needs
to target a specific RE_MSG(i) (or a CO_MSG(i) in the unlikely
case the attacker compromised ECU i’s session keys) and brute-
force the key universe until a correct MAC is found. If we model
the MAC algorithm as a random oracle that takes ECU key as
input (e.g., ek;-keyed Hash MAC), the attacker would expect 2127
MAC evaluations to succeed. This is commonly believed to be
computationally infeasible for practical attackers.

Lastly, the MAC in CO_MSG(i) allows KS to verify ECU i’s iden-
tity and liveness. The validation of CO_MSG(i)’s MAC confirms
ECU i’s receipt of its subscribed session keys. The confirmation
step essentially fulfills ECU entity authentication and liveness de-
tection, and the security thereof reduces to the security of the MAC
algorithm and confidentiality of ECU keys. If KS does not receive a
valid CO_MSG(i) for the current session, it will continue blocking
vehicle motion. For on-demand ECUs, their entity and liveness are
proven by the MAC of a RE_MSG.

5 THE SSKT PROTOCOL

The baseline protocol is straightforward and can be implemented
with off-the-shelf cryptographic libraries. However, it faces a per-
formance challenge: the same session key has to be delivered to
one ECU at a time, accumulating significant communication over-
head. In comparison, secret sharing-based schemes, epitomized
by the SKT primitive [13] as we introduced in §2.5, provide a
communication-efficient alternative. Next, we construct the SSKT



Session Key Distribution Made Practical for CAN and CAN-FD Message Authentication

protocol based on a customized version of SKT which achieves
the same functionalities of SKDC but yields higher communication
efficiency.

5.1 SKT Limitations

While we intend to harness its advantage in communication effi-
ciency for session key distribution, the original SKT can not be
directly applied to automotive settings due to the following facts:

o SKT-F1 An potential attack scenario called insider spoofing
may result in the compromise of the spoofed victim’s long-
term secret pair [13]. Specifically, the attacker, also a group
member, forges and sends out the same random number for
the victim member in two protocol sessions. The difference
between the two polynomials may help the attacker deduce
the victim’s long-term secret pair. To prevent this attack,
SKT uses the product of two large primes as the modulus w
and relies on the intractability of large number factorization
for attack prevention.

o SKT-F2 One SKT instance establishes one group key. If there
are multiple groups among all participants, independent SKT
instances are needed to assign a key for each group. For a
participant that subscribes to multiple groups, it needs to
upload a new random number R; to KGC in every instance.

SKT-F1 implies that the modulus w should be at least a thou-
sand bits long to provide practical security. Modular arithmetic at
this scale has far exceeded the payload capacity of CAN/CAN-FD
data frames and processing capability of commercial ECUs. Setting
in our architecture, SKT-F2 would require an ECU to send an up-
dated random number for each session key it subscribes, leading to
excessive communication and processing overhead.

5.2 SSKT: Optimized for Automotive
Deployment

To fit in the proposed architecture in Fig. 2, in the proposed SSKT
protocol we let KS assume the role of the KGC and ECUs the group
members. The pre-shared long-term ECU key ek; takes the pair
form (x;,y;),i € [N]. x;, y; are 128-bit secret keys. To address the
challenges raised by SKT facts and to better accommodate automo-
tive environments, we make the following incremental improve-
ments to SKT in SSKT.

First, as an alternative strategy of preventing insider spoofing
attack, we let KS generate a random number R; once per session
and send it to the respective ECU i. R; is used to derive the pseudo-
random offsets, denoted R;, Jj € SL;, for polynomial constructions.
This rules out the possibility for an insider ECU to deduce any
co-member’s secret information from the polynomials. As a result,
we do not rely on the large number factorization problem for pro-
tocol security as is imposed by SKT-F1. Within one session, the R;
received from KS will be used by ECU i to derive the same ﬁf as
KS did. This reduces the overhead challenge raised in SKT-F2.

Second, to cope with vehicular ECU’s modest processing power,
we choose to deliver a 128-bit secret key sk into 16 bytes. For each
byte of sk, denoted sk for b € [16], a separate polynomial f}(x) is
generated so that f;,(0) = skpp]. As for the arithmetic operations, all

687

ACSAC 2020, December 7-11, 2020, Austin, USA

byte-wise operations are performed in the GF(2%) field'. To ensure
the feasibility of byte-wise arithmetic in GF(2%), we assume the
group size tj of any group G; (i.e., ECUs subscribing message j) is
below 128. While we stick to this constraint in this work, larger
group sizes (and operation in larger finite fields) can be supported
if ECUs are equipped with more capable processors.

Third, we further configure that KS and all ECUs pre-share N’
auxiliary 128-bit vectors %1, ..., XN with N’ := max(ty, ..., £p1) and
the following property: Vb € [16], the b-th byte of X1, ..., Xn and
X1, ..., XN, denoted Xq[p], ..., Xnv[p] and Xy[p]s ..., XN[p] € {0, 1}8,
differ from each other. X1, ..., X5~ will be used on a per-byte basis
as the x-coordinates of the auxiliary polynomial points. This design
choice improves communication efficiency at a manageable storage
cost, as only the y-coordinates of the auxiliary polynomial points
need to be delivered by the protocol.

Finally, to fit into CAN/CAN-FD’s message formats, we define
four special protocol messages: preparation PR_MSG, key delivery
KD_MSG, confirmation CO_MSG, and request message RE_MSG,
with formats specified in Figure 5.

5.3 Protocol Workflow
For a new session, the SSKT protocol proceeds as follows:

e Phase 1: Key Generation Same as Phase 1 of SKDC.

e Phase 2: Preparation For each ECU i in REL, KS generates

a random 128-bit vector R; and sends it out in PR_MSG(i, e)
which includes a y;-keyed MAC. R; is for initializing the
offset vector for ECU i, denoted R;.
When ECU i receives PR_MSG(i, e), it obtains the epoch e
and verifies e > e;. It then validates the received R; with the
MAC. If validation passes, it initializes its own R; as R; and
updates e; to e.

e Phase 3-1: Key Delivery For each message j in RML, KS
generates the payload of KD_MSG(j, e) as follows. First, for
each ECU i € Gj, KS updates the offset vector for mes-
sage j: R; «— Ency, (R;) where the encryption fulfills a keyed
pseudo-random function. The new R; is used as the offset vec-
tor of ECU i for the current message j. That is, R{ — Ri. Sec-
ond, Vb € [16], KS generates a tj-degree polynomial f; (x)
with the following t; + 1 points: {(x;[3], Yi[p] © R;[b])}tiecj
ar}d (0, sk]:[bj). Third, VI € [t;], KS computes a'128—bit qf that
q;[b] = f;f(’el[b])’ b € [16]. Note that {(%;[3), ‘T;[b])}le[t!-] will
serve as the t; auxiliary points for the recovery of flf (0) at
the ECU end. Finally, KS sends out KD_MSG(j, ). The pay-
load contains {q; }eft;]> the epoch e, and a skj-keyed MAC
of the arbitration field and e.

e Phase 3-2: Key Recovery When ECU i receives message
KD_MSG(j, e) from the bus and j € SL;, it obtains the epoch
e and {q;}e[t].] and validates e = ;. Then Vb € [16], it com-
putes f; (0) by interpolating on the following t; + 1 points:
the public auxiliary points {(£;[p), q;[ b])}le[ +;] and the secret

!Computation in a prime field with normal modular arithmetic (eg., GF(251) for byte
operations) is arguably faster than computation in GF(2%) for memory-constrained

processors that do not support full multiplication and division tables. However, prime
fields like GF(251) do not make full use of a byte and thus have reduced security.



ACSAC 2020, December 7-11, 2020, Austin, USA

PR MSG(i, e), Data (256 bits) '

I000||E1DL- I e ||R;|| MAC,,(000||EID;|[e]|R;)

KD_MSG(j, €) ' Data (128t; + 128 bits) i
I 0010...0 IMID]' Ie||q{||...||q |IMACg; (0010 ... 0] | MIDj||€) I

CO_MSG(i) | Data (128 bits) i
I010||EID I e; || MAC,,(010|[EID;||e;||x;) I

RE_MSG(i) Data (128 bits) i

I 011||EID; I e; || MAC,,(011||EID;]|e;)

Figure 5: Protocol message formats of SSKT.

point (x;[p], Yi[p] ® Ii’é[b]), in which Ii’f can be derived locally
from R; in the same way as KS did it. For convenience, we ab-
breviate the ;+1 points as (u1, v1), (uz, v2), - - , (utj+1, Ut,-+1)
and the interpolation proceeds as follows:

J(0) = Un
f0) = Z ’Um( l_[ un—um) )
me(t;+1] nelti+1]/{m}
The product term on the right is known as Lagrange coef-
ficient. All arithmetic operations are performed in GF(2%).

Le., summation and subtraction are XORs; multiplication is
done modulo an irreducible polynomial. The session key sk;

is obtained by concatenating fIf(O) for all b € [16]. ECU i
then validates the recovered sk; with the MAC: If pass, it
accepts sk; as the session key for MIDj; If fail, it sends out
RE_MSG(i) to request KS to resend the KD_MSGs.

e Phase 4: Confirmation Same as Phase 3 of SKDC.

An execution example of SSKT is illustrated in Figure 6, in which
we assume all PR_MSGs pass verification in the first try. For prac-
tical deployment in CAN bus, all three protocol messages need to
break out into subsequent messages. Specially, the KD_MSGs have
variable payload sizes and need to break out also in CAN-FD if the
payload size surpasses 512 bits. To reduce computation workload
at a ECU of modest computing power, the finite field arithmetic
can be implemented with lookup tables and the key recovery phase
can be realized efficiently with pre-computed Lagrange coefficients,
which we will elaborate in §6.

For on-demand ECUs (those not checked in REL but switch on
during normal operation), we let them obtain the session keys
through the request-delivery mechanism of SKDC’s. That is, after
on-demand ECU k sends out a RE_MSG, KS sends back KD_MSGs
in the SKDC format encrypted with xj, instead of resending the
KD_MSG of SSKT’s. This is because SSKT’s KD_MSG is designed
to take advantage of the broadcast nature of CAN/CAN-FD bus
for communication efficiency; SKDC’s KD_MSG has shorter data
payload length and is more efficient for one-on-one session key
deliveries.

5.4 Security Analysis

We analyze the security of SSKT from the same three aspects as
was done for SKDC.

688

Yang Xiao, Shanghao Shi, Ning Zhang, Wenjing Lou, and Y. Thomas Hou

KS ECU 1,2,
-
1. Generate random
session keys {sk;}
2.1 t
ncrement e ) p
—
For every i € REL: PR MSG(1,¢) ECU i on receiving
1. Generate random R; PR_MSG(2,e) PR_MSG(i, e):
2. Send out R; in 1. Verify e > e;
PR_MSG(", e . .
PR_MSG(i, e) - ¢ 2. Vflldate with MAC
~— \%RieR,-;eiee
Foreveryj € RML: E%U]\l/lgg("]?(;e)i::i
1. Generate f;) (x) for KD_MSG(1, e) MID: € SL.:
b=1..16 ST
1. Verifye = ¢;
2. Send out auxiliary KD_MSG(2, e) 5 Cerl v " fjl(O)f
polynomial info in b. olmpulg%b ’ ‘]’("
KD_MSG(j, e) =L get s
3. Validate sk; with
MAC - accept sk;
On receiving
CO_MSG(i): //—_‘—E:\
1. Verifye; = e CO_MSG(1)
2. Confirm ECU i’s CO MSG(2 ECU i after getting all
identity and session - @ required session keys:
key receipt with MAC CO_MSG(?) Compute a digest of
Turn on vehicle engine — received session keys
or motor if all ECUs in \ as CO_MSG(i)’s MAC

REL confirmed

1

Figure 6: Example workflow of SSKT. Message subscription
follows Fig. 2.

First, session key correctness is equivalent to the integrity and
authenticity of KD_MSG. A KD_MSG(j, e) contains the auxiliary
coordinates and a 64-bit hash computed with the session key sk;.
Once ECU i recovers skj, its authenticity can be verified with the at-
tached MAC. An attacker who wishes to forge a valid KD_MSG(j, e)
needs to coincide a MAC before KS broadcasts the authentic one,
which yields expected 263 MAC evaluations to succeed. Replay at-
tack resistance is achieved via the epoch mechanism, similar to that
in SKDC.

Second, recovering the session key from KD_MSG(j, e) is equiv-
alent to reconstructing the ¢;-degree polynomial flf (x), Vb € [16].
To do so, an ECU needs to interpolate on ¢; auxiliary points and its
secret point. An attacker with arbitrary computing capability gains
zero information about flf (x) knowing only the auxiliary points.
This is commonly referred to as information-theoretical security.
Nonetheless, since session key sk; is the only secret input to the
MAC of KD_MSG(j, e), the attacker can brute-force the session
key until a valid MAC is found. After excluding the t; auxiliary
y-coordinates for each byte, the attacker expects %(28 - l‘j)l6 €
(2111, 2127) MAC evaluations to succeed, which retains sufficient
security for a single session. The result comes from the fact that
tj <N ’,and N’ is the number of auxiliary vectors and assumed
to be smaller than 128. For the ECU key pair (x;,y;), the con-
fidentiality of y; can be analyzed with respect to the MAC of
PR_MSG, CO_MSG and RE_MSG similar to that of SKDC. The
confidentiality of x; reduces to that of y; (to insider). That is,



Session Key Distribution Made Practical for CAN and CAN-FD Message Authentication

the information-theoretical security of polynomial secret recov-
ery means no information about x; can be inferred from the auxil-
iary points. For a malicious insider knowing session key sk; and

the polynomial fé (x), Vb € [16], he still cannot locate ECU i’s se-
cret point on the polynomial without knowing y;. As a result, a
brute-force attacker expects 2127 MAC evaluations to find y; or
%(28 — N")16 € (2111, 2127) guesses to coincide with x;.

Lastly, analysis on ECU entity authentication and liveness fol-
lows from SKDC’s since SSKT adopts the same confirmation mech-
anism.

6 IMPLEMENTATION

We implemented the SKDC and SSKT protocols for CAN bus de-
ployment? with Arduino IDE [35] and the CAN Bus Shield library
by Seeed Studio [36]. For each protocol, the implementation con-
sists of two C++ programs: keyserver and ecu. Execution of the ecu
program is driven by the receipt of protocol messages from KS who
runs the keyserver program. The following design choices are made
with the aim of maximizing system efficiency:

1) Using Lightweight Cryptography We use the Arduino
Cryptography Library (ACL) [41] for standard cryptographic func-
tions. ACL provides three versions of AES128 cipher: normal (AES128),
small (AESSmall128), and tiny (AESTiny128), with main differences
in cipher state size (RAM usage) and key setup time. Given that
vehicular ECU can be constrained in memory and computing power,
we choose AESSmall128 for en/decryption of session keys in SKDC
for reduced RAM usage and relatively fast cipher speed. To partially
compensate for the memory cost of storing precomputed Langrange
coefficients (to introduce shortly), we choose AESTiny128 for the
generation of random offset (Rf) in SSKT for minimal RAM usage
in the ecu program. All en/decryption are in ECB mode. For MAC
function in both protocols, we opt for the keyed-mode BLAKE2s
hash. BLAKEZ2s is the 256-bit variant of BLAKE2 [1], a lightweight
hash function specifically designed for speed in software and RAM
saving while attaining SHA-3 level security>.

2) Using Lookup Tables for GF(28) Arithmetic Comparing
to the standard AES en/decryption functions used by SKDC, SSKT
relies on GF(2%) arithmetic for generating secret shares and poly-
nomial recovery shown in Eq. (1), which can be optimized for
computation efficiency using lookup tables. Our implementation
does not use full multiplication or division tables in GF(2%) due
to the presumed memory constraint of ECU (256-by-256 bytes for
each table). Instead, we make use of intermediate lookup tables
of multiplicative inverse, exponentiation, and logarithm (16-by-
16 bytes for each table). Multiplication is efficiently implemented
with exponentiation and logarithm on generator 0x03. Division is
implemented with multiplication and multiplicative inverse.

3) Precomputing Lagrange Coeflicients The Lagrange coef-
ficients in Eq. (1) can be pre-computed to speed up key recovery
during the SSKT runtime of ecu program, with computation com-
plexity linear to N. This is because the auxiliary vectors X1, ..., XN,
used on per-byte basis as x-coordinates of auxiliary polynomial
points, are pre-determined and known to all. In comparison, com-
puting Eq. (1) from scratch would incur complexity quadratic to N.

2Source code and documentation: https://github.com/yang-sec/CAN-SessionKey.
SBLAKE, the original version of BLAKEZ, was a finalist in the SHA-3 competition.

689

ACSAC 2020, December 7-11, 2020, Austin, USA

The memory allocation at each ECU for the pre-computed Lagrange
coefficients is 16(N + 1) bytes.

4) Timing of Protocol Execution In the keyserver program of
both SKDC and SSKT, if multiple session keys are to be delivered to
one ECU in the key delivery phase, a wait period denoted KdDelay is
enforced after sending each KD_MSG. For SSKT, an additional wait
period denoted PrDelay is enforced after sending the last PR_MSG
in the preparation phase. The reason behind the waiting mechanism
is as follows. Since KS has much higher processing power than a
normal ECU, the latter takes longer to process a protocol message
(eg., MAC validation and key recovery for KD_MSG) than KS gen-
erating that message. In our Arduino-based implementation, ECU
reads from the CAN Rx buffer only after the incumbent message
gets finished processing. If KS sends messages too frequently, the
ECU will miss out some of them due to its limited Rx buffer size (we
do not implement any queuing mechanism for CAN messages in
the ecu program for memory saving). In response, the waiting mech-
anism described above ensures that the ECU receives all required
protocol messages in the correct order and format. For achieving
the best time efficiency, the minimum possible values of KdDelay
and PrDelay can be determined by experimenting with the actual
CAN bus system and used for evaluation, as we will show in §7.1.

7 EVALUATION

The evaluation contains two parts. In §7.1 we construct a CAN bus
test platform and evaluate protocol runtimes for an entire key distri-
bution session. In §7.2 we benchmark the two protocols with respect
to protocol functionalities and perform large-scale extrapolation
analyses on their performance in CAN/CAN-FD buses.

7.1 Runtime Evaluation with Test Platform

We set up a CAN bus test platform with an Arduino Due board
(32-bit processor, 84MHz clock) as KS and six Arduino Uno broads
(8-bit processor, 16MHz clock) as ECU nodes. A photo of the test
platform is shown in Figure 7. A Seeed Studio CAN bus shield
was attached to each board to fulfill the link and physical layer
functions of CAN. All shields were connected to a common bus
from the CAN_L, CAN_H interface. A 1209 terminal resistor was
added to each end of the bus. We note that the test platform was
for CAN bus only since CAN-FD-compatible Arduino accessories
were not commercially available at the time of writing.

For the evaluation of each protocol, we used protocol runtime,
measured from the generation of session keys to the receipt of all
CO_MSGs by KS, as the performance metric. The CAN bit rate
was fixed at 500kb/s. The keyserver program was configured to
distribute session keys for M message IDs to N ECUs in one ses-
sion, with every message ID being subscribed by all N ECUs. The
keyserver and ecu programs were uploaded to KS and each ECU
node respectively.

The protocol runtimes of SKDC and SSKT for one session under
different M, N are shown in Figure 8. In all cases, we find the
minimum possible PrDelay for SSKT is 5.7 ms and it is insensitive
to M or N. When M = 1, KdDelay is not needed for both protocols.
SKDC achieves better result than SSKT because of the overhead
brought by latter’s preparation phase. When M = 6, the minimum
possible KdDelay for SKDC is 6.8 ms for any N while for SSKT


https://github.com/yang-sec/CAN-SessionKey

ACSAC 2020, December 7-11, 2020, Austin, USA

Yang Xiao, Shanghao Shi, Ning Zhang, Wenjing Lou, and Y. Thomas Hou

Table 1: Cryptographic computation runtimes (ys) on Ar-

duino Uno and Arduino Due (simulating ECU not KS)

Operation Uno Due
AESSmall128-ECB Set Key 131.64 23.66
AESSmall128-ECB Encrypt (per byte) 42.40  7.06
AESSmall128-ECB Decrypt (per byte) 73.66 12.33
AESTiny128-ECB Set Key 9.98 1.25
AESTiny128-ECB Encrypt (per byte) 42.39  7.23
BLAKE?2s Keyed Reset 3512.94 55.09
BLAKE2s Hash (per byte) 54.61  0.80
BLAKEZ2s Finalize 3508.25 53.14
Degree-2 Polynomial f(0) Recovery (per byte) 10.40 ~0
Degree-5 Polynomial £(0) Recovery (per byte) 19.86 ~0
Degree-10 Polynomial f(0) Recovery (per byte) 33.56 ~0

Table 2: Communication overheads of SKDC and SSKT pro-

tocol messages

120 )
--’*—_-

—_— e e L]

w 4 "

2 100 — |

o w-oIETET

£ 80l 8-- —e— SKDC, M=1

2 -e- SKDC,M=6

Z 601 —a— SSKT,M=1

5 -=- SSKT,M=6

[8)

B 401 /r/‘.

=]

j -

o ._’——r———d"—_*__'
20
ol ‘ |

2 3 4 5 6

N (Number of ECUs)

Figure 8: Protocol runtime with CAN bus test platform.

itis {6.5,6.2,5.5,4.4}ms for N = {2, 3,4, 5} respectively. Also the
gap between SKDC and SSKT diminishes for M = 6 and the latter
starts to show advantage after N = 4. It is anticipated that SSKT’s
advantage will scale up for larger M and N, contributed by its
better communication efficiency in the key delivery phase and the
amortization effect of its one-time preparation overhead. With our
test platform, however, the scale for SSKT experiment stops at
M = 6,N =5 due to the memory constraint of Arduino Uno.

7.2 Extrapolation Analyses

In order to bypass the hardware limitation of the test platform,
we perform benchmark tests on protocol functionalities and use
them to extrapolate protocol performance in large-scale CAN/CAN-
FD bus networks with respect to ECU computation workload and
communication overhead.

ECU Computation Workload The runtimes for single cryp-
tographic computations in Arduino Uno and Arduino Due (both
simulating ECU not KS) are shown in Table 1. It is observed that
one-time hash operations (keyed reset and finalize) are much more
costly in Uno than in Due. We speculate the reason is that the
modest 8-bit processor of Uno does not support the same level of
parallelization in these hash operations than the 32-bit processor
of Due. Polynomial recovery computations, which are boosted by

690

Message size ~ Message
(In CAN bits) count
SKDC KD_MSG 524 MN
(CAN): CO_MSG 222 N
SKDC KD_MSG 105 MN
(CAN-FD): CO_MSG 60 N
SSKT PR_MSG 444 N
(CAN): KD_MSG 262(1+ N) M
CO_MSG 222 N
SSKT PR_MSG 86 N
(CAN-FD): KD_MSG avg. 60 + 39N M
CO_MSG 60 N

the usage of GF(2%) lookup tables and pre-computed Lagrange co-
efficients, are significantly more efficient than AES en/decryption
and become too minimal to be measured in Due.

The overall ECU computation workloads of a complete session
for different M, N are extrapolated from the cryptographic compu-
tation runtimes. The results of Uno experiment and Due experiment
are shown in Figure 9(a) and 9(b) respectively. We observe that in
the Uno experiment the ECU workload of SSKT slightly increases
in N but generally stays below that of SKDC when M > 10. For
the Due experiment (representing a more powerful ECU), SSKT
achieves a bigger reduction in ECU workload than SKDC does.

Communication Overhead The size and count of each proto-
col message are shown in Table 2. Message count represents the
occurrence of the protocol message in one session. Message size
represents the communication overhead in CAN bits brought by
one such protocol message and is calculated based on follows:

e CAN and CAN-FD message fields excluding the data fields
and CAN-FD’s CRC field have fixed sizes. The size of a CAN-
FD CRC field depends on the preceding data field size [32].
The data field sizes of follow Figure 3 and 5.

e We assume the DLC, data and CRC fields of a CAN-FD frame
are transmitted at 5 times of the CAN bit rate, which is
inline with the standard specification [18]. All other fields



Session Key Distribution Made Practical for CAN and CAN-FD Message Authentication

ACSAC 2020, December 7-11, 2020, Austin, USA

SKDC CAN, N=5 p
- SKDC CAN, N =10 .
00 SKDC CAN-FD, N =5
- SKDC CAN-FD, N =10

SSKT CAN, N=5 4
- SSKT CAN, N =10 -
SSKT CAN-FD, N=5
- SSKT CAN-FD, N=10 __

wu
S
o

200

Communication Overhead (ms)
= w
o o
8 S
|
i
|

—— SKDC 17,51 — skoc
'gsoo — SSKT,N=2 ’g —— SSKT,N=2,5,10
E --- SSKT,N=5 = 15.0

k] _ °

& 400 SSKT, N =10 g

S 2125

5 5

= 300 2 100

s s

5 g7

£ 200 e

[} o 5.0

£ 5

O 100 O 55

5 10 15 20 25 30 35 40 45 50 5 10 15 20

M (Number of Message IDs)

(a) ECU computation workload (Arduino Uno)

25
M (Number of Message IDs)

30

(b) ECU computation workload (Arduino Due)

Vg

35 40 45 50 10 15 20 25 30 35 40

M (Number of Message IDs)

45 50

(c) Communication overhead

Figure 9: Extrapolation analyses.

are transmitted at the CAN bit rate. The message size results
are denominated in CAN bits.

o If a protocol message needs to be broken into separate CAN
or CAN-FD frames for transmission, the message size result
accounts for all the break-out frames.

With the above criteria and the CAN bit rate set at 500kb/s, the
overall communication overheads of a complete session for differ-
ent M, N are extrapolated and shown in Figure 9(c). We observe
that SSKT yields a significantly reduced overall communication
overhead than SKDC for any bus type and N, when M > 10. For
example, given N = 10, M = 50 and CAN-FD bus, which we spec-
ulate would be an appropriate automotive network scenario, the
communication overheads of SKDC and SSKT are 106 ms and 47
ms respectively, marking a 56% advantage for SSKT.

8 DISCUSSION
8.1 Performance Bottlenecks

Compared to computation workload, communication overhead
is less flexible and has limited room for improvement, since it is
largely determined by the underlying CAN/CAN-FD protocol and
physical-layer specification. If ECU processing capability continues
to improve (eg., using Arduino Due instead of Uno in our case)
and the automotive industry imposes more stringent timing re-
quirements on key establishment, the inflexible communication
overhead will become a major performance bottleneck. To this
end, we consider SSKT’s advantage in communication efficiency a
highlight for its adoption.

8.2 Memory Cost

SSKT’s superior computation efficiency comes at the cost of extra
memory usage. SSKT needs to store the pre-distributed N’ auxil-
iary vectors of x-coordinates, requiring 16N’ bytes of RAM. In our
implementation, SSKT also needs to store the GF(2%) lookup tables
and pre-compute Lagrange coefficients to speed up polynomial
recovery, costing another (768 + 16(N + 1)) bytes of RAM. Although
nowadays memory has become fairly affordable even for embedded
devices, the trade-off between computation efficiency (time) and
memory usage (space) itself is an interesting topic and deserves
more attention from the resource optimization perspective.

691

8.3 Deficiency and Future Work

The current design of SSKT supports 128 or fewer ECUs in one mes-
saging group, due to the polynomial computation within GF(28).
Combining with the consideration on memory cost, a proper deploy-
ment scenario for our current SSKT implementation is a CAN/CAN-
FD bus network of controlled ECU population for each message
group. Although a modern passenger car typically has no more
than 80 ECUs [9], of which those connected by a CAN/CAN-FD
bus are even fewer, we still consider scalability in ECU quantity an
important onward issue. For SSKT to support larger ECU messaging
groups, we can dissect the session key into fewer and longer blocks
(eg., 2-Bytes). Then polynomial computation shall be performed
in a larger finite field (eg., GF(2'®)) which supports much bigger
group sizes (eg., up to 2'%). This in turn requires higher processing
capability from ECUs and more efficient implementations of finite
field arithmetic, as lookup tables could be too large to store.

Lastly, our hardware evaluation is not able to capture the impact
of tamper-resistant memory usage, which would need ECU imple-
mentation with trusted platform modules (TPM). We will address
the above challenges in future work.

9 RELATED WORK

9.1 Legacy CAN/CAN-FD Message
Authentication & Key Management
Schemes

Recognizing the lack of built-in authentication mechanisms of au-
tomotive communication networks and its security implication,
various message authentication schemes have been proposed prior
to AUTOSAR specification with a focus on CAN bus. [15, 26, 28]
achieve point-to-point authentication wherein each pair of sender
and receiver ECUs share a unique MAC key. However, point-to-
point authentication schemes are impractical for the resource-
constrained in-vehicle ECUs for two reasons. First, they need sig-
nificant resource at each ECU to manage pairwise keys. Second,
each broadcast message needs to carry multiple MACs intended for
different recipients, resulting in communication inefficiency.



ACSAC 2020, December 7-11, 2020, Austin, USA

In contrast, [11, 14, 21, 33, 39, 40, 43] aim for group authentica-
tion, i.e., each group of ECUs share a unique MAC key for inter-
nal message authentication. These schemes differ in the grouping
method of ECUs. [21, 40] allows for a single group of ECUs for MAC
purposes. [14, 33, 43] group ECUs based on designated security lev-
els, each level is assigned a MAC key. [11] assumes arbitrary ECU
groupings that is assigned a MAC key with a help of a key server.
[39] separates message IDs into security groups that in each group
one ECU is designated as the sole sender for distributing keying
materials to all members.

Noticeably, these legacy schemes commonly adopt arbitrarily
MAC truncation (some are 8 or 16 bits) to cope with the limited
payload capacity. Nonetheless, these works provide valuable lessons
on deploying security mechanisms in CAN/CAN-FD which are
often echoed in later AUTOSAR-compliant designs [27, 30, 38].

9.2 Secret-sharing-based Group Key
Establishment

Secret sharing has been used for key establishment in previous
work. In early works [5, 6, 10], a key generation paradigm is used
in that group keys can be derived from the pre-distributed secret
shares. To reduce storage for pre-distributed information and dis-
tinguish sessions, later works [3, 4, 12, 22, 23] let the key server
to actively generate a new secret key and deliver the secret shares
to the group members, although they differ in the specific share
delivery and secret reconstruction mechanisms. The SKT primitive
adopted in our paper follows the second paradigm and further sup-
ports variable group size and the key authentication, which fits our
automotive setting.

10 CONCLUSION

In this paper we address the practical issue of session key estab-
lishment for message authentication purposes in automotive com-
munication networks. Under a proposed AUTOSAR-compliant key
management architecture, we construct two protocols: the baseline
SKDC and the communication-efficient SSKT, both of which are
customized for deployment in CAN and CAN-FD buses. We imple-
mented the proposed SKDC and SSKT protocols on commercial
microcontroller boards and evaluated their performance with hard-
ware experiment and extrapolation analysis. The result shows that
SSKT achieves better computation and communication efficiency
at scale which results in a lower overall protocol runtime, at the
cost of increased ECU memory footprint. In future work we will
continue to improve the proposed protocols with a special focus on
memory usage control and scalability in network size. In the evolv-
ing landscape of security challenges in modern vehicles, we hope
the proposed architecture design, key distribution protocols, and
discussion on practical issues will provide useful insights towards
deployable security for vehicular systems.

ACKNOWLEDGMENTS

This work was supported in part by US National Science Foundation
under grant CNS-1837519 and by Virginia Commonwealth Cyber
Initiative (CCI).

692

Yang Xiao, Shanghao Shi, Ning Zhang, Wenjing Lou, and Y. Thomas Hou

REFERENCES

[1] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. 2013. BLAKE2: simpler, smaller, fast as MD5. In International Confer-
ence on Applied Cryptography and Network Security. Springer, Berlin, Heidelberg,
119-135.

AUTOSAR. 2017. AUTOSAR Release 4.2.2: Specification of Module Secure
Onboard Communication.  https://www.autosar.org/fileadmin/user_upload/
standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
Amos Beimel et al. 1996. Secure schemes for secret sharing and key distribution.
Technion-Israel Institute of technology, Haifa, Israel.

Shimshon Berkovits. 1991. How to broadcast a secret. In Workshop on the Theory
and Application of of Cryptographic Techniques. Springer, Berlin, Heidelberg,
535-541.

Rolf Blom. 1984. An optimal class of symmetric key generation systems. In
Workshop on the Theory and Application of of Cryptographic Techniques. Springer,
Berlin, Heidelberg, 335-338.

Carlo Blundo, Alfredo De Santis, Amir Herzberg, Shay Kutten, Ugo Vaccaro, and
Moti Yung. 1992. Perfectly-secure key distribution for dynamic conferences. In
Annual international cryptology conference. Springer, Berlin, Heidelberg, 471-486.
LIN Consortium. 2010. LIN Specification Package, Revision 2.2A.

MOST Cooperation. 2004. MOST Specification Revision 2.3.

Christof Ebert and Capers Jones. 2009. Embedded software: Facts, figures, and
future. Computer 42, 4 (2009), 42-52.

Amos Fiat and Moni Naor. 1993. Broadcast encryption. In Annual International
Cryptology Conference. Springer, Berlin, Heidelberg, 480-491.

Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede.
2012. LiBrA-CAN: a lightweight broadcast authentication protocol for controller
area networks. In International Conference on Cryptology and Network Security.
Springer, Berlin, Heidelberg, 185-200.

Lein Harn. 1995. Efficient sharing (broadcasting) of multiple secrets.
Proceedings-Computers and Digital Techniques 142, 3 (1995), 237-240.

L. Harn and C. Lin. 2010. Authenticated Group Key Transfer Protocol Based on
Secret Sharing. IEEE Trans. Comput. 59, 6 (2010), 842-846.

Oliver Hartkopp, Cornel Reuber, and Roland Schilling. 2012. Message authenti-
cated CAN. In 10th Int. Conf. on Embedded Security in Cars (ESCAR 2012), Berlin,
Germany.

Ahmed Hazem and HA Fahmy. 2012. LCAP - a lightweight can authentication
protocol for securing in-vehicle networks. In 10th Int. Conf. on Embedded Security
in Cars (ESCAR 2012), Berlin, Germany, Vol. 6.

1SO. 2006. ISO 11898-3:2006 - Road vehicles - Controller area network (CAN) - Part
3: Low-speed, fault-tolerant, medium-dependent interface. Standard. International
Organization for Standardization, Geneva, Switzerland.

ISO. 2015. ISO 11898-1:2015 - Road vehicles - Controller area network (CAN) - Part
1: Data link layer and physical signalling. Standard. International Organization
for Standardization, Geneva, Switzerland.

ISO. 2016. ISO 11898-2:2016 - Road vehicles - Controller area network (CAN) -
Part 2: High-speed medium access unit. Standard. International Organization for
Standardization, Geneva, Switzerland.

Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, et al. 2010. Experimental security analysis of a modern automobile.
In 2010 IEEE Symposium on Security and Privacy. IEEE, New York, NY, USA,
447-462.

Sekar Kulandaivel, Tushar Goyal, Arnav Kumar Agrawal, and Vyas Sekar. 2019.
CANvas: fast and inexpensive automotive network mapping. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Berkeley, CA,
389-405.

Ryo Kurachi, Yutaka Matsubara, Hiroaki Takada, Naoki Adachi, Yukihiro
Miyashita, and Satoshi Horihata. 2014. CaCAN-centralized authentication system
in CAN (controller area network). In 14th Int. Conf. on Embedded Security in Cars
(ESCAR 2014), Hamburg, Germany.

Chi Sung Laih, Jau Yien Lee, and Lein Harn. 1989. A new threshold scheme and
its application in designing the conference key distribution cryptosystem. Inform.
Process. Lett. 32, 3 (1989), 95-99.

Chih-Hung Li and Josef Pieprzyk. 1999. Conference key agreement from secret
sharing. In Australasian Conference on Information Security and Privacy. Springer,
Berlin, Heidelberg, 64-76.

Rainer Makowitz and Christopher Temple. 2006. Flexray-a communication
network for automotive control systems. In 2006 IEEE International Workshop on
Factory Communication Systems. IEEE, New York, NY, USA, 207-212.

Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered
passenger vehicle. Black Hat USA 2015 (2015), 91.

Dennis K Nilsson, Ulf E Larson, and Erland Jonsson. 2008. Efficient in-vehicle
delayed data authentication based on compound message authentication codes.
In 2008 IEEE 68th Vehicular Technology Conference. IEEE, New York, NY, USA,
1-5.

—_—
o)

IEE

(13

[14

(15]

[16

(17

(18

[19

[20

[21

[22

(23]


https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf

Session Key Distribution Made Practical for CAN and CAN-FD Message Authentication

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]
[35

[36]

Stefan Niirnberger and Christian Rossow. 2016. —vatiCAN- vetted, authenticated
CAN bus. In International Conference on Cryptographic Hardware and Embedded
Systems. Springer, Berlin, Heidelberg, 106-124.

Hisashi Oguma, Akira Yoshioka, Makoto Nishikawa, Rie Shigetomi, Akira Otsuka,
and Hideki Imai. 2008. New attestation based security architecture for in-vehicle
communication. In IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications
Conference. IEEE, New York, NY, USA, 1-6.

Mert D Pesé, Troy Stacer, C Andrés Campos, Eric Newberry, Dongyao Chen,
and Kang G Shin. 2019. LibreCAN: Automated CAN Message Translator. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM, New York, NY, USA, 2283-2300.

Andreea-Ina Radu and Flavio D Garcia. 2016. LeiA: A lightweight authentication
protocol for CAN. In European Symposium on Research in Computer Security
(ESORICS 2016). Springer, Cham, 283-300.

Robert Bosch GmbH. 1991. CAN Specification Version 2.0.

Robert Bosch GmbH. 2012. CAN with Flexible Data-Rate Version 1.0.

Hendrik Schweppe, Yves Roudier, Benjamin Weyl, Ludovic Apvrille, and Dirk
Scheuermann. 2011. Car2x communication: securing the last meter-a cost-
effective approach for ensuring trust in car2x applications using in-vehicle sym-
metric cryptography. In 2011 IEEE Vehicular Technology Conference (VIC Fall).
IEEE, New York, NY, USA, 1-5.

Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612-613.
Arduino Software. 2020. Arduino IDE Documentation. https://www.arduino.cc/
en/Guide

Seeed Studio. 2018. CAN BUS Shield. https://github.com/Seeed-Studio/CAN_
BUS_Shield

693

ACSAC 2020, December 7-11, 2020, Austin, USA

[37] Shane Tuohy, Martin Glavin, Ciaran Hughes, Edward Jones, Mohan Trivedi, and

Liam Kilmartin. 2014. Intra-vehicle networks: A review. IEEE Transactions on
Intelligent Transportation Systems 16, 2 (2014), 534-545.

Jo Van Bulck, Jan Tobias Miihlberg, and Frank Piessens. 2017. VulCAN: Effi-
cient component authentication and software isolation for automotive control
networks. In Proceedings of the 33rd Annual Computer Security Applications Con-
ference. ACM, New York, NY, USA, 225-237.

Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. 2011. CA-
NAuth - a simple, backward compatible broadcast authentication protocol for
CAN bus. In ECRYPT Workshop on Lightweight Cryptography, Vol. 2011.

Qiyan Wang and Sanjay Sawhney. 2014. VeCure: A practical security framework
to protect the CAN bus of vehicles. In 2014 International Conference on the Internet
of Things (IOT). IEEE, New York, NY, USA, 13-18.

Rhys Weatherley. 2018. Arduino Cryptography Library. https://rweather.github.
io/arduinolibs/crypto.html

Haohuang Wen, Qingchuan Zhao, Qi Alfred Chen, and Zhiqiang Lin. 2020. Auto-
mated Cross-Platform Reverse Engineering of CAN Bus Commands From Mobile
Apps. In The 2020 Network and Distributed System Security Symposium (NDSS’20),
San Diego, CA, USA.

Samuel Woo, Hyo Jin Jo, In Seok Kim, and Dong Hoon Lee. 2016. A practical
security architecture for in-vehicle CAN-FD. [EEE Transactions on Intelligent
Transportation Systems 17, 8 (2016), 2248-2261.

Werner Zimmermann and Ralf Schmidgall. 2006. Bussysteme in der Fahrzeugtech-
nik. Springer, Vieweg, Wiesbaden.


https://www.arduino.cc/en/Guide
https://www.arduino.cc/en/Guide
https://github.com/Seeed-Studio/CAN_BUS_Shield
https://github.com/Seeed-Studio/CAN_BUS_Shield
https://rweather.github.io/arduinolibs/crypto.html
https://rweather.github.io/arduinolibs/crypto.html

	Abstract
	1 Introduction
	2 Background
	2.1 Automotive Communication Network
	2.2 CAN and CAN-FD Basics
	2.3 CAN and CAN-FD Message Authentication
	2.4 Message Authentication Key Management
	2.5 Secret-sharing-based Key Establishment

	3 System Architecture
	3.1 Network Model
	3.2 Practical Considerations on Session Key Establishment
	3.3 A Key Server-based Architecture

	4 Baseline: The SKDC Protocol
	4.1 Protocol Workflow
	4.2 Security Analysis

	5 The SSKT Protocol
	5.1 SKT Limitations
	5.2 SSKT: Optimized for Automotive Deployment
	5.3 Protocol Workflow
	5.4 Security Analysis

	6 Implementation 
	7 Evaluation
	7.1 Runtime Evaluation with Test Platform
	7.2 Extrapolation Analyses

	8 Discussion
	8.1 Performance Bottlenecks
	8.2 Memory Cost
	8.3 Deficiency and Future Work

	9 Related Work
	9.1 Legacy CAN/CAN-FD Message Authentication & Key Management Schemes
	9.2 Secret-sharing-based Group Key Establishment

	10 Conclusion
	Acknowledgments
	References

