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ABSTRACT
Anomaly-Based Intrusion Detection Systems (IDSs) have been ex-
tensively researched for their ability to detect zero-day attacks.
These systems establish a baseline of normal behavior using be-
nign traffic data and flag deviations from this norm as potential
threats. They generally experience higher false alarm rates than
signature-based IDSs. Unlike image data, where the observed fea-
tures provide immediate utility, raw network traffic necessitates
additional processing for effective detection. It is challenging to
learn useful patterns directly from raw traffic data or simple traffic
statistics (e.g., connection duration, package inter-arrival time) as
the complex relationships are difficult to distinguish. Therefore,
some feature engineering becomes imperative to extract and trans-
form raw data into new feature representations that can directly
improve the detection capability and reduce the false positive rate.
We propose a geometric feature learningmethod to optimize the fea-
ture extraction process. We employ contrastive feature learning to
learn a feature space where normal traffic instances reside in a com-
pact cluster.We further utilize H-Score feature learning tomaximize
the compactness of the cluster representing the normal behavior,
enhancing the subsequent anomaly detection performance. Our
evaluations using the NSL-KDD and N-BaIoT datasets demonstrate
that the proposed IDS powered by feature learning can consistently
outperform state-of-the-art anomaly-based IDS methods by signif-
icantly lowering the false positive rate. Furthermore, we deploy
the proposed IDS on a Raspberry Pi 4 and demonstrate its appli-
cability on resource-constrained Internet of Things (IoT) devices,
highlighting its versatility for diverse application scenarios.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Com-
puting methodologies→Machine learning algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiHoc ’24, October 14–17, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0521-2/24/10
https://doi.org/10.1145/3641512.3686380

KEYWORDS
Machine Learning-Based Intrusion Detection System, Geometric
Feature Learning, Contrastive Learning.

ACM Reference Format:
Chaoyu Zhang, Shanghao Shi, Ning Wang, Xiangxiang Xu, Shaoyu Li,
Lizhong Zheng, Randy Marchany, Mark Gardner, Y. Thomas Hou, and Wen-
jing Lou. 2024. Hermes: Boosting the Performance of Machine-Learning-
Based Intrusion Detection System through Geometric Feature Learning.
In International Symposium on Theory, Algorithmic Foundations, and Pro-
tocol Design for Mobile Networks and Mobile Computing (MobiHoc ’24), Oc-
tober 14–17, 2024, Athens, Greece. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3641512.3686380

1 INTRODUCTION
The development of cloud computing, the expansion of 5G net-
works, and the exponential growth of IoT devices have led to an
unprecedented increase in network traffic and complexity. This ex-
pansion not only facilitates innovative applications but also causes
significant vulnerabilities [18]. Cyber threats have evolved to be
more sophisticated, and attackers are exploiting these vulnerabili-
ties to compromise the confidentiality, integrity, and availability of
critical information on the network. The 2016 Mirai botnet [2] is an
example of powerful distributed denial-of-service (DDoS) attacks.
In these attacks, numerous Internet-connected devices, infected
with Mirai malware, flooded targeted servers with excessive Inter-
net traffic. This attack resulted in major websites, including Twitter,
Netflix, Reddit, and CNN, temporarily inaccessible to millions of
users. Given these circumstances, the implementation of an intru-
sion detection system (IDS) has become imperative. IDS plays a
crucial role in the continuous monitoring and analysis of network
traffic, capable of identifying potential attacks.

In general, there are two types of IDSs to safeguard network
infrastructures: signature-based and anomaly-based IDS. Signature-
based IDS functions by comparing observed traffic against a data-
base of known attack patterns or signatures [11, 13, 16, 17]. This
method is highly effective in recognizing and thwarting established
threats, making it an essential tool for defending against known
attacks. However, its efficacy is limited to known threats, leaving a
gap that anomaly-based IDS aims to fill. Anomaly-based IDS works
on the principle of behavioral analysis [19, 23, 29, 32, 33, 40]. It es-
tablishes a baseline of normal network behavior and continuously
monitors for deviations, flagging any unusual activity that could
signify a potential intrusion. This approach enables it to detect

https://doi.org/10.1145/3641512.3686380
https://doi.org/10.1145/3641512.3686380


MobiHoc ’24, October 14–17, 2024, Athens, Greece Zhang, et al.

novel, a.k.a. zero-day attacks, which do not match any known sig-
natures. While more adaptable to emerging threats, anomaly-based
IDS can be prone to higher false-positive rates [34, 44].

Research Motivation: Constructing an anomaly-based IDS
that not only detects intrusions but also identifies the type of intru-
sion (including known attack types and one superclass of zero-day
attacks) is valuable. Identifying intrusion types is crucial for the
intrusion response system (IRS) [3, 4]. Each type of intrusion may
require a specific response. For example, a DDoS attack in [8] might
necessitate rate limiting or blocking traffic from certain IPs, while
a detected malware infiltration [5, 42] could require isolation of the
infected system. Knowing the type of intrusion allows the IRS to
activate the most effective countermeasures. Exploring zero-day
attacks is also a crucial task [14, 27], since we can extract the new
signatures of these emerging threats, thereby improving the robust-
ness of existing signature-based IDS. Concurrently, recognizing
zero-day attacks can provide significant and novel samples for re-
training the model of the existing anomaly-based IDS, enhancing
their detection capabilities. Therefore, an IDS that detects intrusion
and identifies the intrusion type holds practical value and is neces-
sary for the existing IRS and IDS. However, the all-in-one solution is
particularly challenging for resource-constrained devices. These de-
vices often have limited computational power, memory, and energy
resources. Signature-based IDS typically require processing power
and storage to maintain and update a database of known attack
signatures, which is difficult for resource-constrained IoT devices.
Keeping the signature database updated in a constantly evolving
threat landscape is critical for the effectiveness of signature-based
IDS. In an IoT environment, this poses a challenge due to the sheer
number of devices and potentially limited network bandwidth.

Research Objective: Therefore, the goal of our research is to 1)
improve the overall performance of the anomaly-based IDS by mini-
mizing the false positive rate and reducing the incidence of detection
omissions, and 2) extend the capabilities of anomaly-based IDS by
enabling them not only to detect an intrusion but also to precisely
identify the specific type of the intrusion for resource-limited devices.

In the conventional approach to machine learning-based IDS, fea-
ture engineering holds substantial importance within the pipeline
as it directly impacts the ultimate detection performance. Unlike
image data, where the observed features provide immediate utility,
raw network traffic necessitates additional processing for effective
detection [10, 15]. Learning useful patterns directly from raw data
traffic or simple traffic statistics (e.g., connection duration, package
inter-arrival time) is challenging as the complex relationships are
difficult to distinguish. Therefore, it becomes imperative to extract
features that can directly enhance the performance of detection mod-
els rather than relying solely on raw data traffic or simple traffic
statistics.

We propose a novel IDS that optimizes the feature extraction
process by learning a comprehensive and compact normal behav-
ior. We utilize the geometric feature learning [38] as it enables an
explainable distance-based feature extraction. For clarity purposes,
we define the term features as the feature representations extracted
by the neural network. The space mapped by this neural network
is henceforth referred to as the feature space. Furthermore, we
name the space encompassing all benign feature representations as
the baseline.

The high-level design of Hermes includes a two-step training
phase: the first step involves contrastive feature learning. Draw-
ing inspiration from the application of contrastive learning in ma-
nipulating feature representations in latent space for computer
vision tasks, as noted in [31, 35], our approach uses two normal
traffic records to form a positive pair, and a normal and an abnormal
traffic record to form a negative pair. This learning process attracts
positives and increases the distance between negatives, generating
a new baseline. In this space, benign instances are clustered closely
while attack instances are repelled from the benign cluster, thereby
enhancing the performance of subsequent anomaly detection.

The second step involves H-Score feature learning [36, 37]
further optimizing the learned features by maximizing the compact-
ness of the cluster representing the normal behavior. Furthermore, it
can increase the distance between different types of traffic, making
it easier for the IDS to distinguish between classes of attacks.

For IDS inference, Hermes employs a dual inference mech-
anism: it uses a similarity-based rule to measure deviations of
traffic features from the baseline for anomaly-based detection, and a
Maximum A Posteriori (MAP) rule for attack type identification.
This inference mechanism also evaluates if an instance is a zero-
day attack using entropy-based uncertainty from the posterior
distribution and inconsistency between the two predictions.

Our contributions are summarized as follows:
(1) Hermes employs contrastive feature learning to establish

a well-formed baseline to distinguish benign and intrusion
features, thus enabling anomaly detection.

(2) Building on this, Hermes employs H-Score feature learning
to capture the dependencies between traffic and their types,
enabling the inference phase to identify the attack types. This
method focuses on reducing geometrical distance in baseline,
narrowing distances among the same type of features, and
increasing distances between different classes of features,
further enhancing anomaly detection ability and enabling
attack identification.

(3) The dual inference of Hermes applies a similarity-based rule
to the learned features to determine if the traffic is malicious
and utilizes MAP estimation to assess the preliminary type
of intrusion. Furthermore, it classifies the types of known
attacks and flags zero-day attacks.

(4) Extensive evaluations of Hermes across two datasets and
diverse hardware platforms have consistently demonstrated
its effectiveness. Hermes outperforms various state-of-the-
art IDS baselines.

2 SYSTEM MODEL AND THREAT MODEL
System Model: We consider a general IDS architecture following
[1, 6], which is illustrated in Fig. 1. Our system operates on the
premise that a network gateway G interconnects various devices.
This gateway manages both incoming and outgoing network traffic,
making it an optimal location formonitoring and analyzing network
traffic. The IDS operates in two modes: training and inference.
In training mode, it employs a network traffic flow generation
protocol like NetFlow1, which aggregates packets into sequences

1NetFlow: Cisco’s widely-used flow-based network traffic collection and monitoring
protocol [7].
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Table 1: Definition and Notations

Symbol Definition
𝑋 Network flow records variable
𝑌 Network traffic labels variable
𝑥 An instance of network flow record
𝑦 A label for corresponding flow record
𝑃𝑋 , 𝑃𝑌 Distributions of 𝑋 and 𝑌 respectively
𝑃𝑋,𝑌 Joint distribution of 𝑋 and 𝑌
𝑃𝑌 |𝑋 Posterior distribution given 𝑋

𝔦𝑋 ;𝑌 CDK function, the statistical dependence of 𝑋 , 𝑌
𝜁 ≤𝑘 (𝔦𝑋 ;𝑌 ) Top k modes of 𝔦𝑋 ;𝑌
F 𝑘
X
,F 𝑘

Y
k-dimensional feature spaces for 𝑋 and 𝑌

𝑓 ∈ F 𝑘
X

k-dimensional features
𝑔 ∈ F 𝑘

Y
k-dimensional features

𝑓 ⊗ 𝑔 Joint function
FX×Y Functional space of all joint functions 𝑓 ⊗ 𝑔
𝑙𝑖 𝑗 Pair-wise loss function
L Cumulative loss function
H (𝑓 , 𝑔) H-Score
tr(·) Trace function, sum of elements on the diagonal
1(·) Indicator function
∥ · ∥F Induced norm in feature geometry, defined as

∥𝛾 ∥2
F

= E𝑃𝑋 𝑃𝑌

[
𝛾2 (𝑋,𝑌 )

]
𝑓 (𝑥 ;𝜃0) Model learned by contrastive feature learning
𝑓 (𝑥 ;𝜃1) Model refined by H-Score feature learning
𝑔(𝑦;𝜃2) Identification model
G, S Gateway G, training server S
Z (𝑃𝑌 |𝑋 ) Uncertainty from posteriori distribution

Network Traffic

Network Traffic

NetFlow Collector

Gateway
IDS

NetFlow Collector

Gateway
IDS

NetFlow Exporter

Flow RecordFlow Record
Flow RecordFlow Record

Training server

IDS Model

Figure 1: The system workflow of Hermes

and summarizes them for analysis. The NetFlow Exporter then
compiles these sequences into flow records, encapsulating network
traffic characteristics, and forwards them to a training server S.
These records are utilized for training the IDS model. In inference
mode, the well-trained model is deployed at the network gateways
G for intrusion detection.

Threat Model: In our threat model, we assume attackers will
carry out various network-based attacks by manipulating network
traffic. This includes maliciously generated probing traffic, data
injection, denial of service attacks, and other network-based attacks
that exploit system vulnerabilities, such as malware, infiltration and
exfiltration, and man-in-the-middle attacks. We assume attackers
may exploit zero-day attacks, implying that there are no known
patterns for such attacks. We assume the traffic patterns after the
malicious manipulation exhibit some deviations from the normal
benign traffic. We assume that the IDS and the gateway it resides
are trusted and secure.

3 DESIGN OF HERMES
3.1 Workflow
The workflow of Hermes is depicted in Fig. 1, offering an overview
of our system. The pre-training phase begins with the NetFlow
collector gathering packet data from network gateways ( 1 ). This
data is processed and then relayed to the NetFlow exporter ( 2 ),
who creates structured flow records ( 3 ). The training phase ( 4 )
involves two critical steps: first, we construct an initial anomaly
detectionmodel 𝑓 (𝑥 ;𝜃0) using contrastive feature learning to define
a baseline. We then refine this model from 𝑓 (𝑥 ;𝜃0) to 𝑓 (𝑥 ;𝜃1), and
develop the identification model 𝑔(𝑦;𝜃2) through H-Score feature
learning (as shown in Fig. 2). After the fully trained IDS model is
deployed at the gateway G ( 5 ). In dual inference, Hermes utilizes
a similarity-based rule for anomaly detection and a MAP rule for
attack identification and analyzes if this intrusion is a zero-day
attack. The system’s pivotal elements, contrastive feature learning,
H-Score feature learning, and dual inference, are expounded in the
following sections.

3.2 Training Step One: Contrastive Feature
Learning

To establish a representative baseline for anomaly detection, we
employ geometrical feature extraction through contrastive feature
learning. This method leverages the inherent differences and simi-
larities in network traffic to enhance the performance of anomaly-
based IDS. Specifically, each training data record in our system
consists of two components: the flow record 𝑥 ∈ R𝑑 , where 𝑑 repre-
sents the dimensionality of the flow record, and its corresponding
output label 𝑦 ∈ {0, 1}. Here, 0 denotes benign traffic flow, while 1
indicates an intrusion. The primary aim of our contrastive learning
algorithm is to extract a representative benign feature cluster as a
baseline. To achieve this, we train a neural network 𝑓 (𝑥 ;𝜃0) with
weights 𝜃0, which takes the input record 𝑥 ∈ R𝑑 and produces a
feature 𝑓 (𝑥) ∈ R𝑘 . Let 𝑥𝑖 represent a benign input and 𝑥 ′𝑚 an intru-
sive input. Given our dataset includes 𝑁 instances of normal traffic
and𝑀 intrusion cases, we compute features for each benign pair
of 𝑓 (𝑥𝑖 ) and 𝑓 (𝑥 𝑗 ). The goal is to maximize the similarity between
𝑓 (𝑥𝑖 ) and 𝑓 (𝑥 𝑗 ), while simultaneously distinguishing between be-
nign 𝑓 (𝑥𝑖 ) and all malicious 𝑓 (𝑥 ′𝑚) instances, where 𝑓 (𝑥 ′𝑚) |𝑚∈{𝑀 } .
In this context, u𝑖 = 𝑓 (𝑥𝑖 ) and u𝑗 = 𝑓 (𝑥 𝑗 ) are the features of benign
inputs 𝑥𝑖 and 𝑥 𝑗 , respectively, and v𝑚 = 𝑓 (𝑥 ′𝑚) is the feature of
an intrusive input 𝑥 ′𝑚 . We use the same pairwise loss function as
defined in [34] to achieve these goals.

𝑙𝑖 𝑗 = − log

(
exp(uT

𝑖
u𝑗/𝜏)

exp(uT
𝑖
u𝑗/𝜏) +

∑𝑀
𝑚=1 exp(uT

𝑖
v𝑚/𝜏)

)
. (1)

The term 0 < 𝜏 < 1 represents the temperature coefficient. The
overall loss functionL aggregates all pairwise losses, encompassing
both 𝑙𝑖 𝑗 and 𝑙 𝑗𝑖 terms:

L =
1

𝑁 (𝑁 − 1)

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1
(𝑙𝑖 𝑗 + 𝑙 𝑗𝑖 ) . (2)

Phase one of the training, as depicted in Fig. 2, offers an intuitive
visualization of the learning process. In this phase, by minimizing
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Figure 2: Hermes Design: Our approach begins with contrastive feature learning to train a model 𝑓 (𝑥 ;𝜃0), establishing a baseline
space (Training Step One). Subsequently, we refine this model to 𝑓 (𝑥 ;𝜃1) and develop the identification model 𝑔(𝑦;𝜃2) using
H-Score feature learning (Training Step Two). During the Inference phase, the established IDS model employs a similarity-based
rule for anomaly detection and a MAP rule for attack identification. We further analyze each instance to ascertain whether it
could be a zero-day attack, based on the results from dual inference.

the loss function, we enhance the similarity among benign data
representations, effectively drawing them closer together. Concur-
rently, this process distances benign representations from those
indicative of intrusions. Once the model converges, it results in
a well-defined baseline for normal traffic, which is essential for
effective anomaly detection.

3.3 Training Step Two: H-Score Feature
Learning

While our current model is adept at anomaly detection, it cannot
identify specific types of attack and the baseline is not optimal
yet. To address this limitation, we employ H-Score feature learning
[36, 37], which explores the geometric feature space beyond the
established baseline. In essence, H-Score learning geometrically
maps the feature to construct unique clusters for each attack type.
This enables the identification of specific attack types during the
inference phase. Additionally, it increases the separability between
features of different classes. This approach further refines the base-
line feature space, distancing it from intrusion clusters, which in
turn enhances the performance of the anomaly-based IDS.

To begin, we define a variable 𝑋 indicating flow records, and a
variable 𝑌 as corresponding labels. In this context, each label 𝑦𝑖 is
an integer where 𝑦𝑖 ∈ {0, 1, . . . , 𝑛 − 1}; here, 0 represents a benign
label, while any non-zero number corresponds to a specific type
of attack. These variables, 𝑋 and 𝑌 , follow the joint distribution
𝑃𝑋,𝑌 . Given the complexity of traffic encountered by IDS, this joint
distribution 𝑃𝑋,𝑌 is typically unknown, making the direct compu-
tation or estimation of the statistical dependence, as indicated by
the CDK (canonical dependence kernel) function 𝔦𝑋 ;𝑌 (referenced
in Eq. 4 in [38]), unfeasible.

𝔦𝑋 ;𝑌 =
𝑃𝑋,𝑌 (𝑥,𝑦) − 𝑃𝑋 (𝑥)𝑃𝑌 (𝑦)

𝑃𝑋 (𝑥)𝑃𝑌 (𝑦)
, (3)

Consequently, we focus on learning 𝔦𝑋 ;𝑌 from data samples us-
ing H-Score feature learning, specifically by considering its rank-𝑘
approximation 𝜁 ≤𝑘 (𝔦𝑋 ;𝑌 ), given 𝑘 ≥ 1. The approximation of 𝔦𝑋 ;𝑌
by the rank-𝑘 joint function is expressed as 𝑓 ⊗ 𝑔 =

∑𝑘
𝑖=1 𝑓𝑖 ⊗ 𝑔𝑖 ,

where 𝑓 ∈ F 𝑘
X

and 𝑔 ∈ F 𝑘
Y
represent 𝑘-dimensional features. This

formulation translates the computation of 𝜁 ≤𝑘 (𝔦𝑋 ;𝑌 ) into an op-
timization problem, aiming to minimize the approximation error
∥𝔦𝑋 ;𝑌 − 𝑓 ⊗ 𝑔∥F , where ∥ · ∥F is as defined in Table 1. The opti-
mization variables in this context are the 𝑘-dimensional features
𝑓 and 𝑔. However, the error ∥𝔦𝑋 ;𝑌 − 𝑓 ⊗ 𝑔∥F for a specific 𝑓 and 𝑔
cannot be directly computed due to the unknown nature of 𝔦𝑋 ;𝑌 . To
overcome this challenge, we utilize the H-Score H (𝑓 , 𝑔), defined
for 𝑘 ≥ 1 and 𝑓 ∈ F 𝑘

X
, 𝑔 ∈ F 𝑘

Y
, as

H (𝑓 , 𝑔) ≜ 1
2

(

𝔦𝑋 ;𝑌


2
F
−



𝔦𝑋 ;𝑌 − 𝑓 ⊗ 𝑔


2
F

)
= E

[
𝑓 T (𝑋 )𝑔(𝑌 )

]
− (E [𝑓 (𝑋 )])T E [𝑔(𝑌 )] − 1

2
· tr

(
Λ𝑓 Λ𝑔

)
, (4)

Where Λ𝑓 = E
[
𝑓 (𝑋 ) 𝑓 T (𝑋 )

]
and Λ𝑔 = E

[
𝑔(𝑌 )𝑔T (𝑌 )

]
, with

tr(·) denoting the trace function. The H-Score serves as a measure
of the quality of the approximation, where a higher H-Score value
indicates a lower approximation error. Accordingly, the optimal
weights refined through the H-Score are designed to maximize the
correlation between the traffic flow record and its specific types.
This approach not only maximizes the average distance between
different classes but also minimizes the distance within the same
class, thereby enhancing class separability. This detailed discussion
can be found in [36, Proposition 4], with its proof provided in
Appendix F therein.

In the subsequent discussion, we delve into how features are
integrated to discern the specific type of traffic. Assuming we have
obtained 𝑓 ∈ F𝑘

X
and 𝑔 ∈ F𝑘

Y
by maximizing the H-Score H (𝑓 , 𝑔),
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we determine the traffic flow where 𝑘 ≥ rank(𝔦𝑋 ;𝑌 ), having estab-
lished that 𝑓 ⊗𝑔 = 𝔦𝑋 ;𝑌 . With the above assumption, we can obtain
the following result, as discussed in [38, Section 3.2].

Suppose 𝑓 ⊗ 𝑔 = 𝔦𝑋 ;𝑌 . Then, we will have

∥𝔦𝑋 ;𝑌 ∥2F = tr(Λ𝑓 · Λ𝑔), (5)

𝑃𝑌 |𝑋 (𝑦 |𝑥) = 𝑃𝑌 (𝑦) (1 + 𝑓 T (𝑥)𝑔(𝑦)) . (6)
Using the features 𝑓 and𝑔, we are able to compute the strength of

the dependence between𝑋 and𝑌 , represented as 𝔦𝑋 ;𝑌 . The posterior
distribution, as outlined in Eq. 6 is instrumental in identifying the
specific type of traffic. In Hermes, where 𝑋 represents the input
records and 𝑌 denotes the types, the system obtains the results of
the posterior distribution 𝑃𝑌 |𝑋 of the label 𝑌 by Eq. 6. The traffic
type is determined through a corresponding maximum a posteriori
(MAP) estimation, defined as follows:

𝑦MAP (𝑥) = arg max
𝑦∈Y

𝑃𝑌 |𝑋 (𝑦 |𝑥) (7)

= arg max
𝑦∈Y

𝑃𝑌 (𝑦) (1 + 𝑓 T (𝑥)𝑔(𝑦)), (8)

where 𝑃𝑌 can be sourced from the monitored daily traffic. This
method is proposed and explained in [38] Eq. 25.

A visual representation of H-Score feature learning is illustrated
in Fig. 2. In Training Step Two, the primary loss function used is
−H (𝑓 , 𝑔). This function is used for calculating the optimal param-
eters 𝜃1 and 𝜃2 during the second step of the training phase. It is
specifically designed for the joint training of the parameters 𝜃1 and
𝜃2 in a two-network architecture. In this architecture, the neural net-
work 𝑓 (𝑥 ;𝜃1) is responsible for generating 𝑘-dimensional features
𝑓 in the feature spaceF 𝑘

X
. The identificationmodel𝑔(𝑦;𝜃2) is a fully

connected network, given the underlying distribution of𝑌 . This net-
work takes the one-hot encoded vector [1{𝑦 = 1}, . . . ,1{𝑦 = |𝑛 |}]
of𝑦 as input, and produces the 𝑘-dimensional features 𝑔 from labels
in the feature space F 𝑘

Y
as output. Thus, the H-Score estimator

evaluates the H-Score between 𝑓 and 𝑔 to capture the dependence
between traffic and the corresponding type. The main goal during
the second step of the training phase is to maximize this H-Score
for geometrically optimal representation of features, as depicted in
the training step two of Figure 2.

3.4 Dual Inference Phase
The inference phase, as shown in Figure 2, is designed to detect
the intrusion, identify the type, and explore zero-day attacks. In
this phase, two rules are employed, both utilizing the same features
extracted from the model 𝑓 (𝑥 ;𝜃1). The first rule, a similarity-based
detection rule, measures the deviation of traffic features from the
learned baseline, thereby enabling anomaly detection. The second
rule, a Maximum A Posteriori rule, identifies the type of attack.
It compares the posteriori distribution for all types of traffic and
outputs the type with themaximum value as the classification result.
The dual inference mechanism also evaluates if an instance is a zero-
day attack using entropy-based uncertainty from the posterior
distribution and inconsistency between the two predictions.

3.4.1 Rule 1: Similarity-Based Detection. The anomaly-based de-
tection in our system utilizes a threshold-based mechanism based
on similarity measures. This process starts with the aggregation

of features from the baseline space. We then compute the mean of
these normalized features to establish an anchor baseline template,
denoted as 𝑧:

𝑧 =
1∑

𝑖 1(𝑦𝑖 = 0)
∑︁
𝑖

(
1(𝑦𝑖 = 0) 𝑓 (𝑥𝑖 )

∥ 𝑓 (𝑥𝑖 )∥2

)
, (9)

Where 1(·) denotes the indicator function, with 𝑦𝑖 = 0 signify the
benign traffic, and ∥·∥2 represents the 𝐿2-norm.

To assess the similarity 𝑆 (𝑥𝑖 ) between a new traffic flow 𝑥𝑖 and
the anchor baseline template 𝑧, we employ the similarity estimator:

𝑆 (𝑥𝑖 ) =
𝑧T 𝑓 (𝑥𝑖 )

∥𝑧∥ × ∥ 𝑓 (𝑥𝑖 )∥
. (10)

This similarity score ranges between 0 and 1. In order to classify
a new traffic flow 𝑥𝑖 as normal or anomalous, we set a threshold
score 𝜌 within the range of [0, 1]. This threshold is derived from
the distribution of similarity scores of the benign training data.
We start by sorting these scores in ascending order, resulting in a
sequence S = [𝑆1, 𝑆2, . . . , 𝑆𝑁 ]. The threshold 𝜌 is then determined
by selecting the 𝑝 − 𝑡ℎ percentile of this sequence:

𝑟 =

⌊ 𝑝

100
· 𝑁

⌋
, (11)

where ⌊·⌋ denotes the floor function, and 𝑝 represents a percent-
age. As a result, the threshold 𝜌 is set to 𝑆𝑟 , which corresponds to
the 𝑟 − 𝑡ℎ value in the sorted sequence S. To minimize the False
Positive Rate, a low percentile 𝑝 is recommended. An observation
𝑥 is predicted as an intrusion if its similarity score falls below this
threshold 𝜌 :

𝑦𝑆𝑖𝑚 (𝑥) = 1(𝑆 (𝑥) < 𝜌). (12)

3.4.2 Rule 2: Maximum A Posteriori Rule for Attack Identification.
The second rule, a MAP rule, can help to identify the type of attack.
It does this by comparing the correlation between the features
extracted from the traffic and the geometric features corresponding
to specific attack types. The neural network 𝑓 (𝑥 ;𝜃1), processes
these records to extract corresponding features, represented as
𝑓 (𝑥). The identification model 𝑔(𝑦;𝜃2) generates the feature for
each class, denoted as 𝑔(𝑦). For a new record 𝑥 , we predict the
corresponding attack type using the MAP rule as:

𝑦MAP (𝑥) = arg max
𝑦∈Y

{
𝑃𝑌 (𝑦) [1 + 𝑓 T (𝑥)𝑔(𝑦)]

}
, (13)

where 𝑃𝑌 (𝑦) is the true traffic type distribution that can be moni-
tored from the daily network flow traffic.

3.5 Zero-Day Attack Analysis
The dual inference of Hermes is adept at discerning whether an
attack could be a zero-day attack.

Suppose an instance is a zero-day attack; it will exhibit new char-
acteristics and previously unseen signatures, leading to increased
uncertainty in the model’s predictions. This uncertainty is evalu-
ated based on the entropy of the posterior distribution (see Equation
6): 𝑃𝑌 |𝑋 (𝑦 |𝑥) = 𝑃𝑌 (𝑦) · (1 + 𝑓 T (𝑥)𝑔(𝑦)). The features of a zero-day
attack may manifest in a feature space distinct from any known
attack’s space, resulting in no dominant probability for any known
attack in the posterior distribution and consequently, a higher en-
tropy. This metric can help to determine if it is a zero-day attack.



MobiHoc ’24, October 14–17, 2024, Athens, Greece Zhang, et al.

Algorithm 1 Training Phase
1: Training Step One: Contrastive Feature Learning
2: Input: Flow Records with benign inputs {(𝑥𝑖 )}𝑁𝑖=1 and mali-

cious inputs {(𝑥 ′
𝑖
)}𝑀

𝑖=1
3: Output: Optimized parameters 𝜃0 for 𝑓 (𝑥 ;𝜃0)
4: for each epoch in num_epochs do
5: for each benign input pair (𝑥𝑖 , 𝑥 𝑗 ) do

/* Compute the features */
6: u𝑖 ← 𝑓 (𝑥𝑖 ), u𝑗 ← 𝑓 (𝑥 𝑗 )
7: v𝑚 ← 𝑓 , (𝑥 ′𝑚)

/* Compute the pairwise loss 𝑙𝑖 𝑗 */

8: 𝑙𝑖 𝑗 = − log( exp(u𝑇
𝑖
u𝑗 /𝜏 )

exp(u𝑇
𝑖
u𝑗 /𝜏 )+

∑𝑀
𝑚=1 exp(u𝑇

𝑖
v𝑚/𝜏 )

)
9: end for

/* Compute the cumulative loss function L */
10: L = 1

𝑁 (𝑁−1)
∑𝑁
𝑖=1

∑𝑁
𝑗=𝑖+1 𝑙𝑖 𝑗 + 𝑙 𝑗𝑖

/* Update the parameters */
11: 𝜃0 = 𝜃0 − 𝛼∇L,
12: end for

13: Training Step Two: H-Score Feature Learning
14: Input: Flow Records with labels {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1
15: Output: Optimized parameters 𝜃1 for 𝑓 (𝑥 ;𝜃1), and 𝜃2 for

𝑔(𝑦;𝜃2)
16: for each epoch in num_epochs do
17: for each (𝑥𝑖 , 𝑦𝑖 ) in Training data {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 do

/* Convert labels 𝑦 to one-hot encoding 𝑦one-hot*/

18: 𝑦one-hot [𝑖] =
{

1 if 𝑖 = 𝑦

0 otherwise
/* Get 𝑓 and 𝑔 values using 𝑥 and 𝑦one-hot*/

19: 𝑓 = {𝑓 (𝑥𝑖 )}𝑁𝑖=1, 𝑔 = {𝑔(𝑦one-hot i))}𝑁𝑖=1
/* Compute the negative H-Score as loss, L */

20: L = −H (𝑓 , 𝑔)
/* Update the models’ parameters */

21: 𝜃1 = 𝜃1 − 𝛼∇L, 𝜃2 = 𝜃2 − 𝛼∇L
22: end for
23: end for

We define this uncertainty as follows:

Z (𝑃𝑌 |𝑋 (𝑦 |𝑥)) = −
∑︁
𝑖

𝑃𝑌 |𝑋 (𝑦𝑖 |𝑥) log 𝑃𝑌 |𝑋 (𝑦𝑖 |𝑥) . (14)

Consistent results from similarity-based and MAP rules are typ-
ically observed in detection scenarios. However, inconsistencies
may arise, such as when the similarity rule indicates an instance is
benign, while the MAP rule identifies it as an attack, or vice versa.
These inconsistencies aremore likely to occurwhen the features of a
zero-day attack are geometrically situated in the mid-area between
the feature spaces of different types of traffic. Therefore, if an in-
stance is a zero-day attack, it is more likely to provoke inconsistent
predictions between the similarity and MAP rules, necessitating
further investigation to confirm if it is a zero-day attack. We have
validated these findings through observations and experimental
results.

We summarize the whole training phase and dual inference
procedures in Algorithms 1 and 2, and compose the notations in

Algorithm 2 Dual Inference

1: Input: Flow Records {(𝑥𝑖 )}𝑁𝑖=1
2: Output: Anomaly detection results: {𝑦𝑆𝑖𝑚 (𝑥𝑖 )}𝑁𝑖=1 , and the

traffic types {𝑦𝑀𝐴𝑃 (𝑥𝑖 )}𝑁𝑖=1.
/* Compute normalized features for benign traffic */

3: for all benign records 𝑥𝑖 do
4: 𝑧𝑠𝑢𝑚 ← 𝑧𝑠𝑢𝑚 + 𝑓 (𝑥𝑖 )

∥ 𝑓 (𝑥𝑖 ) ∥2
5: end for
6: 𝑧 ← 𝑧𝑠𝑢𝑚

number of benign records
7: for each 𝑥𝑖 in Flow Records {(𝑥𝑖 )}𝑁𝑖=1 do

/*Compute the similarity 𝑆 for new traffic flow 𝑥𝑖 */
8: 𝑆 (𝑥𝑖 ) ← 𝑧𝑇 𝑓 (𝑥𝑖 )

∥𝑧 ∥×∥ 𝑓 (𝑥𝑖 ) ∥
/*Sort similarity scores of benign traffic and compute 𝜌*/

9: S← sorted similarity scores of benign traffic
10: 𝑟 ←

⌊ 𝑝
100 · 𝑁

⌋
11: 𝜌 ← 𝑆𝑟

/* Predict new observation based on similarity score and thresh-
old */

12: 𝑦𝑆𝑖𝑚 (𝑥𝑖 ) = 1(𝑆 (𝑥𝑖 ) < 𝜌)
/* Predict the traffic by MAP rule 𝑦 (𝑥) */

13: Estimate the prior distribution 𝑃𝑦 (𝑦)
14: 𝑦𝑀𝐴𝑃 (𝑥𝑖 ) = arg max𝑦∈Y 𝑃𝑌 (𝑦) · (1 + 𝑓 𝑇 (𝑥𝑖 )𝑔(𝑦))

/* Zero-Day Attack Analysis */
15: Z (𝑃𝑌 |𝑋 ) = −

∑
𝑗 𝑃𝑌 |𝑋 (𝑦 𝑗 |𝑥𝑖 ) log 𝑃𝑌 |𝑋 (𝑦 𝑗 |𝑥𝑖 )

16: if Z (𝑃𝑌 |𝑋 ) is an outlier then
17: return zero-day attack
18: else if 𝑦𝑀𝐴𝑃 (𝑥) consist with 𝑦𝑆𝑖𝑚 (𝑥) then
19: return not zero-day attack
20: else if 𝑦𝑀𝐴𝑃 (𝑥) not consist with 𝑦𝑆𝑖𝑚 (𝑥) then
21: return zero-day attack
22: end if
23: end for

Tab. 1. The whole illustration for H-Score feature learning can be
found in [38].

4 EXPERIMENT
To evaluate the effectiveness of Hermes, we assess its capabili-
ties in three key areas: anomaly detection, attack identification,
and exploration of zero-day attack performance. Concurrently, we
benchmark the performance of Hermes against a range of baseline
methods and state-of-the-art anomaly-based IDS.

4.1 Datasets and Experiment Settings
We prototype Hermes using the PyTorch framework [25] and eval-
uate on two prominent network traffic datasets: NSL-KDD [30] and
N-BaIoT [20]. The NSL-KDD dataset, a well-established benchmark
in IDS performance evaluation [6, 24, 28], includes benign traffic
along with four categories of intrusions, in Table 3. We highlight in
bold text the 16 intrusion sub-classes that are only present in the
test set. This presents a significant challenge to Hermes in detecting
emerging zero-day threats. Each record in the dataset features 41
attributes extracted from network traffic. These evaluations were
conducted on a server equipped with an Intel Core i9-11900K CPU
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Figure 3: Evaluating Hermes on Raspberry Pi 4, an IoT device
in a resource-constrained environment.

@ 3.50GHz×16, a GeForce RTX 3080 GPU, and running Ubuntu
20.04.5 LTS.

The N-BaIoT dataset focuses on IoT traffic, encompassing data
from nine commercial IoT devices, including those compromised
by malicious software, such as Mirai and BASHLITE. This dataset
records benign traffic and five types of attacks for both Mirai (‘scan’,
‘ack’, ‘syn’, ‘udp’, and ‘udpplain’) and BASHLITE (‘scan’, ‘junk’,
‘udp’, ‘tcp’, and ‘combo’) [20]. A principal goal to use this dataset
is to verify the applicability of Hermes in resource-constrained
IoT environments. Accordingly, our experiments with the N-BaIoT
dataset were conducted on a Raspberry Pi 4 as depicted in Fig. 3,
equipped with a 1.5 GHz quad-core A72 64-bit ARMV8 CPU, 4GB
RAM, 32GB SIM card storage, and running the Raspbian OS, to
evaluate Hermes’s efficiency in such settings.

The default configurations of Hermes are outlined as follows. For
the NSL-KDD dataset, the network 𝑓 (𝑥 ;𝜃0)/𝑓 (𝑥 ;𝜃1) is composed
of an input layer with 𝑑 = 112 dimensions and an output layer with
𝑘 = 256 dimensions. Additionally, it includes two hidden layers
with sizes of 128 and 256. The 𝑔(𝑦;𝜃2) network, designed for attack
identification, utilizes a three-layer structure with 256, 128, and 5
neurons. For the N-BaIoT dataset, the architecture largely mirrors
that of the NSL-KDD. The key difference is in the input and output
layers of the 𝑓 (𝑥 ;𝜃0)/𝑓 (𝑥 ;𝜃1) network, which are configured to
accommodate 115 feature inputs and 11 class outputs. The ReLU
(Rectified Linear Unit) activation function is implemented after
each hidden layer in both models to introduce non-linearity. Her-
mes employs the Adam optimizer with parameters that include a
learning rate of 𝛼 = 1𝑒 − 4 and a batch size of 𝑏 = 128. The training
regimen varies between datasets: for the first phase, 𝑒 = 20 epochs
are used for NSL-KDD and 𝑒 = 15 for the N-BaIoT dataset. In the
second training phase, an additional 20 epochs are applied to both
datasets. For comprehensive analysis, Hermes’s performance is
benchmarked against machine learning models from the renowned
scikit-learn library [26].

4.2 Evaluation Metric and Baselines
For intrusion detection system performance evaluation, we com-
pute key metrics: Accuracy, Recall, Precision, F1 Score, and False
Positive Rate (FPR), following the same definition in [23, 24, 28].
We also provide the receiver operating characteristic curve (ROC),
plotting recall against FPR, and the area under the curve (AUC)

Table 2: Performance (%) of Hermes on NSL-KDD Dataset

Fig. 3: Evaluating Hermes on Raspberry Pi 4, an IoT device
in a resource-constrained environment.

TABLE II: Performance (%) of Hermes on NSL-KDD Dataset
Method Acc Recall Precis F1 FPR
Hermes Sim 90.17 85.55 96.80 90.83 3.74
CL 87.40 81.89 95.31 88.09 5.32
MLP 85.22 77.92 95.29 85.68 5.10
IsoForest 79.54 69.35 92.90 79.42 7.00
SVM 77.16 72.80 84.92 78.39 17.08
VAE 78.33 85.50 77.88 81.96 31.46
LGR 77.41 72.24 85.83 78.45 15.76
BNB 78.43 65.66 94.88 77.61 4.69
KNN 78.50 64.37 96.79 77.32 2.82
DTC 79.09 74.60 86.81 80.24 14.98
AOC-IDS 89.51 96.59 86.54 91.29 19.84
FeCo 89.55 86.80 94.39 90.44 6.82
CIDS 82.29 77.18 93.54 80.65 -
ESFCM 80.69 80.72 80.85 80.45 -
Two-Tier - 82.00 - - 5.43
TDTC - 84.86 - - 4.86

Hermes MAP Recall Precis F1 FPR Ratio
Normal 88.96 92.66 90.77 7.18 50.48
DoS 84.12 99.79 91.29 0.09 35.86
Probe 92.42 91.62 92.02 0.89 9.56
R2L 94.98 56.04 70.49 3.06 3.96
L2R 66.67 1.74 3.38 4.85 0.13
Weighted Avg 87.77 93.55 90.16 3.87 -
Note: Acc: 87.77 is a multi-class accuracy.

score representing the area under this curve. Our experimental
configuration is as follows:

Hermes Sim employs f(x; ✓1) with the similarity rule for
anomaly detection. Hermes MAP uses f(x; ✓1) and g(y; ✓2)
with the MAP rule for attack identification. CL utilizes the
architecture of f(x; ✓1), It adheres to the similarity rule.
The MLP model integrates the architectures of f(x; ✓1)
and a classification head, optimized using cross-entropy loss.
Comparative performance evaluations include models such
as support vector machine (SVM), variational autoencoder
(VAE), isolation forest (IsoForest), logistic regression (LGR),
Bernoulli naive Bayes (BNB), K-nearest neighbors (KNN),
and decision tree classifier (DTC), along with state-of-the-art
IDS methods [9], [32], [33].

C. Experimental Results

1) Feature Space Insights of Hermes: We utilize t-SNE—a
dimensionality reduction technique to project the features
space, F k

X , into a two-dimensional figure as shown in Fig.

TABLE III: Intrusion classes (sub-classes) of the NSL-KDD
Dataset.

Category Sub-Classes(bold zero-day attacks)
DoS(10) back, land, Neptune, pod, smurf, teardrop, apache2,

mailbomb, processtable, udpstorm
Probe(6) ipsweep, nmap, portsweep, satan, mscan, saint
R2L(16) ftp write, guesspasswd, imap, multihop, phf,

warezmaster, httptunnel, named, sendmail,
snmpgetattack, snmpguess, xlock, xsnoop, worm, spy,
warezclient

U2R(7) bufferoverflow, loadmodule, perl, rootkit, ps, sqlattack,
xterm

4, to help us visually interpret the data patterns of the NSL-
KDD test dataset. In the presented visualizations of F k

X with
a randomly selected 5% subset of the NSL-KDD test dataset,
distinct patterns emerge when comparing the Hermes and
MLP models across both binary anomaly detection and multi-
class attack identification. For anomaly detection, the Hermes
approach in (a) exhibits a more discernible separation between
the ”malicious” and ”benign” clusters, whereas the MLP
model in (b) shows a considerable overlap between the two
categories. This overlap suggests that the MLP may experience
challenges in accurately classifying borderline cases, poten-
tially leading to increased false positives or false negatives.
Moving on to the attack identification, both (c) Hermes and
(d) MLP demonstrate multi-cluster separations representing
various categories. However, a closer inspection reveals that
the Hermes in (c) maintains better-defined boundaries between
the classes, especially when differentiating subtle distinctions
like between ”DoS”, ”Probe”, ”U2R”, and ”R2L”. In contrast,
the MLP’s features in (d) show more intermingling among
classes.

2) Hermes Performance on NSL-KDD: To evaluate our
anomaly intrusion detection performance, In Table II, Her-
mes Sim is highlighted as a top-performing IDS. It records
the top accuracy at 90.17%, leads in Recall with 85.55%,
and has the highest Precision of 96.80%. Its F1 score of
90.83% is the best among all tested methods. Additionally,
Hermes Sim’s False Positive Rate (FPR) is low at 3.74%,
indicating its effectiveness in distinguishing between benign
and malicious activities. Other methods like KNN, although
having a low FPR, do not perform as well in Recall, accuracy,
and F1 score. TDTC (4.86%) and Two-Tier (5.43%) systems
show competitive FPRs but are less effective in other metrics
and in identifying specific attack types. The ROC curves of
Hermes and three other baselines are plotted in Fig. 5 (a), with
our method exhibiting a higher AUC score compared to the
baselines.

For intrusion identification, Table II shows that Her-
mes MAP attains an 87.77% accuracy in identifying four
classes of intrusions amid normal traffic. The table’s lower
section details the identification performance for each traffic
class, alongside their ratio in the training data. With ade-
quate samples, Hermes consistently maintains high accuracy.
Remarkably, it effectively identifies the L2R attack, which
represents a mere 0.13% of the training dataset, with a low
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Table 3: Intrusion classes (sub-classes) of the NSL-KDD
Dataset.

Category Sub-Classes(bold zero-day attacks)
DoS(10) back, land, Neptune, pod, smurf, teardrop,

apache2, mailbomb, processtable, udpstorm
Probe(6) ipsweep, nmap, portsweep, satan, mscan,

saint
R2L(16) ftp_write, guesspasswd, imap, multihop, phf,

warezmaster, httptunnel, named, sendmail,
snmpgetattack, snmpguess, xlock, xsnoop,
worm, spy, warezclient

U2R(7) bufferoverflow, loadmodule, perl, rootkit, ps,
sqlattack, xterm

score representing the area under this curve. Our experimental con-
figuration is as follows: Hermes_Sim employs 𝑓 (𝑥 ;𝜃1) with the
similarity rule for anomaly detection. Hermes_MAP uses 𝑓 (𝑥 ;𝜃1)
and 𝑔(𝑦;𝜃2) with the MAP rule for attack identification. CL utilizes
the architecture of 𝑓 (𝑥 ;𝜃1), It adheres to the similarity rule. The
multi-layer perceptron (MLP) model integrates the architectures
of 𝑓 (𝑥 ;𝜃1) and a classification head, optimized using cross-entropy
loss. Comparative performance evaluations include models such as
support vector machine (SVM), variational autoencoder (VAE), iso-
lation forest (IsoForest), logistic regression (LGR), Bernoulli naive
Bayes (BNB), K-nearest neighbors (KNN), and decision tree classi-
fier (DTC), Along with IDS methods, Two-Tier [28], TDTC [23], ES-
FCM [24], and contrastive-learning-based variants, AOC-IDS [45],
FeCo [34], and CIDS [43].

4.3 Experimental Results
4.3.1 Feature Space Insights. We utilize t-SNE—a dimensionality
reduction technique to project the features space, F 𝑘

X
, into a two-

dimensional figure as shown in Fig. 4. In the presented visualizations
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Figure 4: Visualization of F 𝑘
X

and MLP Output on a Randomly Selected 5% Subset of the NSL-KDD Test Dataset for: (a) Hermes
Anomaly-Detection, (b) MLP Anomaly-Detection, (c) Hermes Attack Identification, and (d) MLP Attack Identification.

Table 4: Devices Specification, and Performance(%) of Hermes_Sim and Hermes_MAP on the N-BaIoT Dataset.

Fig. 4: Visualization of F k
X and MLP Output on a Randomly Selected 5% Subset of the NSL-KDD Test Dataset for: (a) Hermes

Anomaly-Detection, (b) MLP Anomaly-Detection, (c) Hermes Attack Identification, and (d) MLP Attack Identification.

TABLE IV: Devices Specification, and Performance(%) of Hermes Sim and Hermes MAP on the N-BaIoT Dataset.

Devices Specification Hermes Sim Hermes MAP
Index Device Make and Model Device Type Acc1 Recall1 Precis1 F1 1 FPR1 FPR(CL) Acc2 Recall2 Precis2 F1 2 FPR2
0 Danmini Doorbell 99.98 99.99 99.99 99.99 0.03 0.28 97.30 97.31 97.30 97.30 0.82
1 Ennio Doorbell 99.98 99.99 99.99 99.99 0.08 0.31 96.66 96.63 96.66 96.63 0.98
2 Ecobee Thermostat 99.86 99.97 99.77 99.87 0.28 0.31 96.19 96.19 96.24 96.09 1.21
3 Phillips B120N/10 Baby monitor 99.97 99.97 99.96 99.97 0.03 0.06 96.83 96.82 96.83 96.82 0.93
4 Provision PT-737E Security camera 99.94 99.99 99.92 99.95 0.15 0.26 96.00 96.02 96.00 95.97 1.22
5 Provision PT-838 Security camera 99.95 99.99 99.92 99.95 0.09 0.13 97.15 97.15 97.15 97.13 0.82
6 SimpleHome XCS7-1002-WHT Security camera 99.98 99.97 99.99 99.98 0.01 0.52 96.69 96.70 96.69 96.68 0.99
7 SimpleHome XCS7-1003-WHT Security camera 99.98 99.97 99.99 99.98 0.02 0.39 95.53 95.71 95.53 95.39 1.43
8 Samsung SNH 1011 N Webcam 99.97 99.98 99.99 99.99 0.07 0.68 95.56 95.75 95.56 95.43 1.46
Note: Acc2 is a multi-class accuracy, while Recall2, Precis2, F1 2, and FPR2 are weighted class-wise averages.

Fig. 5: (a) The ROC curve of Hermes Sim. (b) Uncertainty
analysis for subclass traffics in exploring zero-day attacks.

we display in Fig. 5 (b) the uncertainty for each intrusion
subclass and normal traffic, calculated using Eq. 15. The x-axis
in the figure represents the intrusion subclasses enumerated in
Table III, with indices 0 to 23 denoting benign and known
attacks, and 24 to 39 indicating zero-day attacks. The y-axis
quantifies the uncertainty associated with the corresponding
traffic, where each subclass is represented by 100 data points.
Notably, known traffic types exhibit lower mean and variance
in uncertainty, whereas zero-day samples display significantly
higher variance and mean. This pattern suggests that high-
uncertainty outliers could be potential zero-day attack samples
warranting further investigation. Furthermore, by analyzing the
discrepancies between outputs from ŷSim(x) and ŷMAP (x),
we find that 77.24% of the intrusions are zero-day attacks. This
insight offers an additional method for identifying potential
zero-day attack samples. The ability of Hermes to explore
zero-day attacks not only aids in generating new signatures
for signature-based IDS but also enhances the training dataset

for anomaly-based IDS, thereby improving overall detection
performance.

3) Hermes performance on N-BaIoT dataset: We expanded
our evaluation of Hermes to include real IoT botnet traffic
datasets, originating from nine commercially available IoT
devices infected by the Mirai and BASHLITE botnets. A
comprehensive breakdown of these devices is provided in
Table IV. For detailed analysis, we created a specific model for
each IoT device and evaluated their performance individually.
Our data partitioning strategy allocated 70% of the data for
training and 30% for testing for each device. We randomly
selected one class to represent zero-day attack data, excluding
this class from the training set and incorporating it solely in
the test set. Additionally, we implemented our system on a
Raspberry Pi 4 to simulate a typical resource-constrained IoT
environment, as illustrated in Figure 3.

Table IV details the performance of Hermes Sim on the
N-BaIoT dataset for each device, encompassing metrics such
as Accuracy, Recall, Precision, F1 Score, and FPR. This table
also compares the False Positive Rates between Hermes Sim
and the contrastive learning method. All devices showed
high rates in all metrics, exceeding 99.6%, with Hermes Sim
consistently achieving a lower FPR than the CL method. In
terms of attack identification, Hermes MAP excelled within
traffic classification, consistently delivering high performance
with a lower FPR among all the devices. In Figure 6, we
extend the comparison of Hermes Sim’s performance with
other baseline methods for each device. Across all metrics,
both Hermes Sim and CL demonstrate high performance,
characterized by elevated levels of accuracy, recall, precision,
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Figure 5: (a) The ROC curve of Hermes_Sim. (b) Uncertainty
analysis for subclass traffics in exploring zero-day attacks.

of F 𝑘
X

with a randomly selected 5% subset of the NSL-KDD test
dataset, distinct patterns emerge when comparing Hermes and the
MLP method across both binary anomaly detection and multi-class
attack identification. For anomaly detection, the Hermes approach
in (a) exhibits a more discernible separation between the "mali-
cious" and "benign" clusters, whereas the MLP model in (b) shows
a considerable overlap between the two categories. (c) Hermes and
(d) MLP demonstrate multi-cluster separations. Hermes in (c) main-
tains better-delineated boundaries between the classes, especially
when differentiating subtle distinctions like between "DoS", "Probe",
"U2R", and "R2L". In contrast, the MLP’s features in (d) show more
intermingling among classes.

4.3.2 Hermes Performance on NSL-KDD. In Tab. 2, Hermes_Sim
achieves high accuracy, recall, precision, and F1 score among all
tested methods while maintaining an FPR as low as 3.74%.

The ablation study demonstrates that adding contrastive fea-
ture learning to the basic MLP method results in improvements

across all metrics, including a 3.97% in recall, while keeping a sim-
ilar FPR. Introducing H-Score feature learning further enhances
performance, with overall improvements of 7.63% in recall, while
reducing the FPR by 1.36% compared to the baseline MLP. Detec-
tion Speed: The average inference time (over 100 records) is 3.58
ms for MLP, 3.20 ms for CL, and 4.25 ms for Hermes_Sim.

The ROC curves of Hermes and three other baselines are plotted
in Fig. 5 (a), with our method exhibiting a higher AUC score com-
pared to the baselines. For intrusion identification, Tab. 2 shows
that Hermes_MAP attains an 87.77% accuracy in identifying four
classes of intrusions amid normal traffic. The table’s lower sec-
tion details the identification performance for each traffic class,
alongside their ratio in the training data. With adequate samples,
Hermes consistently maintains high accuracy. Remarkably, it effec-
tively identifies the L2R attack, which represents a mere 0.13% of
the training dataset, with a low FPR of 4.85%.

To illustrate Hermes’s ability to identify zero-day attacks, we
display in Fig. 5 (b) the uncertainty for each intrusion subclass
and normal traffic, calculated using Eq. 14. The x-axis in the figure
represents the intrusion subclasses enumerated in Table 3, with
indices 0 to 23 denoting benign and known attacks, and 24 to 39
indicating zero-day attacks. The y-axis is the uncertainty associated
with the corresponding traffic. Notably, known traffic types exhibit
lower mean and variance in uncertainty, whereas zero-day sam-
ples display significantly higher variance and mean. This pattern
suggests that high-uncertainty outliers could be potential zero-day
attack samples warranting further investigation. Furthermore, by
analyzing the discrepancies between outputs from 𝑦𝑆𝑖𝑚 (𝑥) and
𝑦𝑀𝐴𝑃 (𝑥), we find that 77.24% of the intrusions are zero-day attacks.
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This insight offers an additional method for identifying potential
zero-day attack samples.

4.3.3 Hermes performance on N-BaIoT dataset. We expanded our
evaluation of Hermes to include real IoT botnet traffic datasets,
originating from nine commercially available IoT devices infected
by the Mirai and BASHLITE botnets. A comprehensive breakdown
of these devices is provided in Tab. 4. For detailed analysis, we
created a specific model for each IoT device and evaluated their
performance individually. Tab. 4 details the performance of our
methods. All devices showed high rates in all metrics, exceeding
99.6%, with Hermes_Sim consistently achieving a lower FPR than
the CL method. Hermes_MAP excelled in attack identification, con-
sistently delivering high performance with a lower FPR among all
the devices. These experimental results validate the performance
enhancement of Hermes in anomaly detection, attack identifica-
tion, and exploration of the zero-day attack. They also demonstrate
the practicality of Hermes in resource-constrained environments,
highlighting its versatility in multi-application scenarios.

5 RELATEDWORK
A critical aspect influencing the performance of anomaly-based
IDS is the construction of the baseline space. Yan et al. [39] utilized
a non-parametric density estimation method to learn legitimate
access patterns. K-Nearest Neighbors, as detailed in [23], enhances
baseline space representativeness by evaluating the similarity of
new data points to established benign instances. Du et al. [9] em-
ploys Long Short-Term Memory networks to model system logs
as natural language sequences. It learns log features from normal
executions and detects anomalies when log features deviate from
the learned patterns. Mirsky et al. [21] proposed an ensemble of
autoencoders to distinguish between normal and abnormal traffic
features. The Variational Autoencoder, explored in [19, 41], excels
in feature extraction and dimensionality reduction, crucial for dis-
tilling vital features from intricate network data. Nguyen et al. [22]
modeled network packets as symbols in a language, enabling the
use of Gated Recurrent Units for anomaly detection. Isolation Forest,
as discussed in [12, 46], takes a unique approach by not modeling
normalcy but instead focusing on the property of anomalies be-
ing more ’isolatable’ than normal points. State-of-the-art methods,
such as FeCo [34] and CIDS [43], employ contrastive learning to
enhance the performance of IDSs. AOC-IDS [45] introduced a con-
trastive loss tailored for Autoencoder to obtain a better baseline
representation, thereby facilitating anomaly detection.

To specifically identify the type of intrusion, signature-based
IDS [11, 13, 16, 17] can achieve this goal by directly comparing
intrusions with known attack database. Wang et al. [32] proposed
a graphical model that stores known traffic features as a relational
graph between features and their labels to detect DDoS attacks. Yan
et al. [40] employed SVM to detect botnets using high-level features
extracted from command and control channels. Pajouh et al. [24]
introduced TDTC, which utilizes a two-tier classification system
to classify traffic. Rathore et al. [28] proposed ESFCM, integrating
Fuzzy C-Means with the Extreme Learning Machine classifier for
attack detection.

Anomaly-based IDS systems face significant challenges with
performance issues and fail to identify the type of intrusion. On

the other hand, while signature-based IDS is mature and effective
in detecting attacks recorded in databases, it fails to address zero-
day attacks. Thus, Hermes represents a novel anomaly-based IDS
designed to unify the advantages of these two categories of IDS
with high performance.

6 DISCUSSION
The rationale behind our design is as follows: traditionally, signature-
based IDS focuses on malicious traffic and extracting their signa-
tures, while the focus in the anomaly-based IDS is normal traffic
and establishing the baseline representing the normal behaviors.
The tasks of identifying attacks and detecting anomalies, including
zero-day, are therefore two separate processes, with each type of
IDS doing one. In Hermes, we take a different approach to integrat-
ing the two types of IDS using machine learning. Instead of looking
at the original traffic representation and building a network traffic
classifier, we focus on feature engineering and propose a frame-
work to construct new feature representations of network traffic.
While our goal is to build a robust baseline, the core component
of anomaly-based IDS, we leverage the knowledge that already
exists in reality (i.e., known attacks). This knowledge helps us to
redefine the feature space so we can have a more robust baseline
traffic representation which leads to more effective detection in an
anomaly-based IDS. Further, since our learning process used the
known attack traffic, as a side effect, the trained model can recog-
nize the known attacks. The proposed feature learning framework
seamlessly integrates the functions of the two types of IDS into a
single system.

7 CONCLUSION
In this paper, we propose Hermes, an anomaly-based IDS that uti-
lizes a geometric feature learning to enhance detection performance
and reduce false positives. This framework aims to extract optimal
features from network traffic, enabling the IDS to detect attacks,
identify the type of attack, and evaluate if it is a previously un-
seen attack. Hermes is a novel anomaly-based IDS that harnesses
the advantages of both signature-based and anomaly-based ap-
proaches. Extensive evaluations of Hermes across two datasets
and diverse hardware platforms have consistently demonstrated its
effectiveness, high performance, and practical viability in resource-
constrained application scenarios.
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