
MS-PTP: Protecting Network Timing from Byzantine Attacks
Shanghao Shi

Virginia Tech

Arlington, Virginia, USA

shanghaos@vt.edu

Yang Xiao

University of Kentucky

Lexington, Kentucky, USA

xiaoy@uky.edu

Changlai Du

Virginia Tech

Arlington, Virginia, USA

cdu@vt.edu

Md Hasan Shahriar

Virginia Tech

Arlington, Virginia, USA

hshahriar@vt.edu

Ao Li

Washington University in St. Louis

St. Louis, Missouri, USA

ao@wustl.edu

Ning Zhang

Washington University in St. Louis

St. Louis, Missouri, USA

zhang.ning@wustl.edu

Y. Thomas Hou

Virginia Tech

Blacksburg, Virginia, USA

thou@vt.edu

Wenjing Lou

Virginia Tech

Arlington, Virginia, USA

wjlou@vt.edu

ABSTRACT

Time-sensitive applications, such as 5G and IoT, are imposing

increasingly stringent security and reliability requirements on net-

work time synchronization. Precision time protocol (PTP) is a de

facto solution to achieve high precision time synchronization. It is

widely adopted by many industries. Existing efforts in securing the

PTP focus on the protection of communication channels, but little

attention has been given to the threat of malicious insiders.

In this paper, we first present the security vulnerabilities of

PTP and discuss why the current defense mechanisms are unable

to counter Byzantine insiders. We demonstrate how a malicious

insider can spoof a time source to arbitrarily shift the system time of

a victim node on an IoT testbed.We further demonstrate the harmful

consequence of the attack on a real Turtlebot3 robotic platform as

the robot fails to locate itself and follows a false trajectory. As a

countermeasure, we propose multi-source PTP, in short, MS-PTP, a

Byzantine-resilient network time synchronization mechanism that

relies on time crowdsourcing. MS-PTP changes the current PTP’s

single source hierarchy to a multi-source client-server architecture,

in which PTP clients take responses from multiple time servers and

apply a novel secure aggregation scheme to eliminate the effect

of malicious responses from unreliable sources. MS-PTP is able to

counter 𝑓 Byzantine failures when the total number of time sources

𝑛 used by a client satisfies 𝑛 ≥ 3𝑓 + 1. We provide rigorous proof

for its non-parametric accuracy guarantee—achieving bounded

error regardless of the Byzantine population. We implemented

a prototype of MS-PTP on our IoT testbed and the results show

its resilience against Byzantine insiders while maintaining high

synchronization accuracy.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9859-6/23/05.

https://doi.org/10.1145/3558482.3590184

CCS CONCEPTS

• Security and privacy → Network security; • Networks →
Time synchronization protocols.

KEYWORDS

Byzantine resilience, Network Time Synchronization, Precision

Time Protocol (PTP), Service Security and Reliability.

ACM Reference Format:

Shanghao Shi, Yang Xiao, Changlai Du, Md Hasan Shahriar, Ao Li, Ning

Zhang, Y. Thomas Hou, and Wenjing Lou. 2023. MS-PTP: Protecting Net-

work Timing from Byzantine Attacks. In Proceedings of the 16th ACM Con-
ference on Security and Privacy in Wireless and Mobile Networks (WiSec ’23),
May 29-June 1, 2023, Guildford, United Kingdom. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3558482.3590184

1 INTRODUCTION

Recently emerged time-sensitive applications, such as autonomous

driving and smart grids, usually require a microsecond or sub-

microsecond level synchronization between different nodes and

failure to achieve these requirements can lead to significant conse-

quences. The Precision Time Protocol (PTP), originally developed

by the IEEE 1588 working group [18], is widely regarded as the de

facto solution to provide highly precise network synchronization.

PTP achieves much higher synchronization accuracy compared to

the Network Time Protocol (NTP), the incumbent synchronization

service for the Internet. It also offers better flexibility than high-

precision GPS-based synchronization, which can only work reliably

with outdoor GPS antennas.

Real-world Applications of PTP. With the help of PTP, devices

in a local network can be synchronized with sub-microsecond ac-

curacy. Currently, PTP has been documented in many industry

standards including the 3GPP 5G standard [5], IEEE TSN standard

[4], and IEEE smart grid standard [2], and has been used by various

time-sensitive networks such as data center networks [31], and

industrial automation networks [35]. In telecommunication, PTP

is deployed in the backhaul networks to transfer timing informa-

tion from accurate time servers in the mobile core networks to

61

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3558482.3590184
https://doi.org/10.1145/3558482.3590184
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558482.3590184&domain=pdf&date_stamp=2023-06-28

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Shanghao Shi, et al.

the base station to achieve the 1.5 𝜇𝑠 stringent time synchroniza-

tion requirements of 5G standards [5, 15]. In high-performance

data centers such as Meta’s data centers, PTP guarantees that data

replicas are perfectly synchronized [31] to gain performance im-

provement as much as 100 times. For CPS, PTP is also employed in

autonomous driving vehicles to synchronize ECUs and sensors in

the intra-vehicle networks [1].

Gaps in Existing Efforts on Securing PTP. The original PTP

[18], however, was designed two decades ago and did not come with

any security mechanism against an adverse network environment.

It has been shown that earlier versions of PTP are susceptible to

various attacks launched by any node in the network, such as mes-

sage spoofing and replay attacks [7, 13, 24], for its lack of proper

authentication mechanism. In response, the latest version of PTP

[3] recommends using symmetric key-based authentication mecha-

nisms to counter network adversaries. This mechanism is supported

by the latest IETF’s PTP key management standard that helps dis-

tribute and manage secret keys for PTP nodes [25]. Recent work

further argues that symmetric key-based authentication mecha-

nisms are not able to address identity spoofing attacks and need

to be replaced by an efficient elliptic-curve and public-key-based

cryptography mechanism [24].

While these authentication mechanisms can effectively protect

against network packet manipulations using secure communication

channels, they cannot defend against malicious or Byzantine insid-

ers. This is because, regardless of how well individual nodes are

protected, no system is perfectly secure. In many cases, especially

IoT devices or swarm robots, it is quite challenging to ensure all

of them are secure, especially since some of them can be physi-

cally captured and tampered with by the adversary [9]. Worse yet,

the aforementioned cryptographical mechanisms are rarely imple-

mented in popular PTP implementations such as PTPD [23] and

linuxPTP [26], introducing more opportunities for attackers.

Analyzing the Impact of Compromised Nodes in Secure Time

SynchronizationNetwork.To develop an effective defense against

malicious insiders, it is often necessary to have insights into the

attack mechanisms. Therefore, the first half of the contribution

focuses on the security analysis of the time synchronization net-

work from the perspective of a malicious insider. We found that,

even if the communication channel is secure, it remains possible for

the adversary to arbitrarily shift the clock of any targeted victim

node within the network, using only a single malicious insider.

The key idea is to exploit the weakness in the election mechanism

for the unique grandmaster (GM) to self-elect as the master to at-

tack the rest of the nodes in the network. To validate our finding,

we demonstrated the attack on the two most popular PTP imple-

mentations, PTPD [23] and linuxPTP [26], in an IoT testbed. To

further show the potentially catastrophic sequence of the attack,

we demonstrate the consequence of our attack on a Turtlebot 3

robotic platform. Turtlebot 3 robot relies on synchronized sensor in-

puts to realize its localization and control functions. When sensors

are de-synchronized, the physical world perceptions from different

modalities also become desynchronized, leading to errors in the

localization and path planning process.

Our Proposed Defense. Our security analysis discovers a key vul-

nerability that can be exploited by a malicious insider—existing PTP

protocols only make use of a single time source. To defend against

the attack, we propose MS-PTP, a Byzantine-resilient network time

synchronization mechanism to safeguard the dependability and

accuracy of PTP timing against a malicious insider who attempts

to dis-synchronize clocks of honest clients. MS-PTP leverages re-

dundancy (i.e., multiple time sources) to increase the PTP system’s

resiliency (i.e., its tolerance to Byzantine failures up to a certain

threshold). The redundant time sources provide each client with

additional measurements for calculating its clock drift/offset in each

synchronization round. However, naively adding time sources (such

as taking the average) does necessarily improve the accuracy, since

the impact from the malicious input is not bounded. To address

this problem, we propose a novel Byzantine-resilient measurement

aggregation scheme for the client to obtain a robust estimate of its

clock drift/offset, given that 𝑓 out of the 𝑛 measurements are poten-

tially Byzantine and 𝑛 ≥ 3𝑓 + 1. The estimation error of MS-PTP is

bounded by

√
2 times the measurement uncertainty of honest PTP

sessions.

Evaluation. We implemented a prototype MS-PTP system on our

IoT testbed. We validated its resilience against different Byzantine

attacks and evaluated its computational efficiency. The results show

that MS-PTP is able to retain microsecond level time synchroniza-

tion accuracy even in the presence of an adaptive attacker with

the full knowledge of our defense mechanism. MS-PTP maintains

this accuracy when the network size grows to 30, which covers all

the typical deployment settings of PTP networks. Moreover, we im-

plemented MS-PTP over network time protocol (NTP), GPS-based

time synchronization method, and a mixture of them to comple-

ment the PTP-only study. We observed similar Byzantine resiliency

performance of MS-PTP for all these protocols, showing the gener-

ality of decentralized design across different time synchronization

technologies of different scales. Lastly, to understand the theoret-

ical guarantee of the proposed protocol, we’ve developed proven

bounds on the time synchronization error. In summary, this paper

makes the following contributions:

• We analyze PTP’s vulnerability from an insider adversary

perspective. To show the feasibility of the attack, we demon-

strate the attack on two popular open software implemen-

tations of the PTP protocol in an IoT network testbed. We

further demonstrate this attack on a physical indoor robot.

• To thwart the threat of malicious insiders, We propose MS-

PTP, a Byzantine-resilient network time synchronization

scheme, as an extension to the existing PTP. MS-PTP features

a robust measurement aggregation scheme that leverages

time crowdsourcing to produce a robust time estimation with

a small bounded error.

• We developed a rigorous proof of the correctness of our

aggregation mechanism and showed that its accuracy is non-

parametric of the population of Byzantine time sources (i.e.,

fixed error bound). MS-PTP can scale to larger networks and

outperforms the current state-of-the-art mechanisms.

• We implemented a proof-of-concept MS-PTP system and

evaluated its performance in various network and attack

scenarios. The results show that MS-PTP achieves excellent

62

MS-PTP: Protecting Network Timing from Byzantine Attacks WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

Ordinary/
Grandmaster

Clock

Boundary
Clock

Transparent
Clock

Ordinary Clocks
(also PTP Clients)

M: Master port S: Slave port : PTP Session

M S
M

M S

S

PTP
Client

Figure 1: PTP network hierarchy.

synchronization accuracy and is compatible with different

time synchronization protocols.

2 PTP: OVERVIEW AND VULNERABILITIES

2.1 PTP Overview

PTP establishes a tree-structured, master-slave network hierar-

chy, as shown in Fig. 1, to fulfill the time synchronization function.

In this architecture, one node, supposedly with the most accurate

clock, is elected to serve as the unique time server—the grandmas-
ter clock (GM). Other intermediate routers and servers are known

as boundary clocks (BCs) or transparent clocks (TCs). The clients
located in the end-leaf nodes are ordinary clocks (OCs) in PTP ter-

minology. Under normal operating conditions, the GM periodically

delivers timing information to downstream clients through the

two-way time transfer (TWTT) mechanism.

Elect the Best Time Source. Upon initialization, the PTP standard

specifies all or at least all master candidate devises to continuously

broadcast a specific type of PTP message, named the ANNOUNCE
message on UDP port 320, that contains essential clock accuracy

and stability information in its payload. When these messages are

received, PTP nodes use the best master clock algorithm (BMCA), a

clock quality comparison algorithm specified by the PTP standard

to decide pairwise master-slave relationship. The master candidate

device will stop broadcasting theirANNOUNCEmessageswhen they
heard from a better clock in the same domain. By doing mutual

comparison recursively, the best time source who beats all the other

clocks survives to be the grand-master (GM) clock, which becomes

the only one that is still broadcasting his ANNOUNCE messages.
When new nodes join the network, they can obtain current GM’s

information through reading the GM’s ANNOUNCE messages and
if they have a better clock, can start a new round of this election

process.

Two-way Time Transfer. After the time source is elected (i.e. the

GM uniquely and stably sends ANNOUNCE messages for a certain
period), timing information will be periodically transferred from

the server to clients following the two-way time transfer protocol
flow, as fig. 2 has depicted. Within one synchronization round,

four accurate hardware timestamps, 𝑡1 to 𝑡4, and two cumulative

residence times, 𝑐1 and 𝑐2 are accurately recorded to measure the

clock offset 𝜃 and clock drift rate 𝛿 of the slave node. 𝑡1 refers to

the sending time of the SYNC message at the master port and 𝑡2
refers to its reception time at the slave port. Similarly, 𝑡3 is the time

that DELAY_REQUEST is sent by the slave port and 𝑡4 refers to

the time of its reception at the Master. 𝑐1 and 𝑐2 are measured by

down-link and up-link TCs with each one adding its residence time

Master Clock Slave Clock

M S

𝑡𝑡1 = Now()
𝐶𝐶𝐶𝐶1=0 SYNC: 𝑡𝑡1 || 𝐶𝐶𝐶𝐶1

Transparent Clock

𝐶𝐶𝐶𝐶1 = 𝐶𝐶𝐶𝐶1+ 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜- 𝑡𝑡𝑖𝑖𝑖𝑖
𝑡𝑡2 = Now()
…
𝑡𝑡3 = Now()
𝐶𝐶𝐶𝐶2=0DEL_REQ: 𝑡𝑡3 || 𝐶𝐶𝐶𝐶2

𝐶𝐶𝐶𝐶2 = 𝐶𝐶𝐶𝐶2+𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜- 𝑡𝑡𝑖𝑖𝑖𝑖

𝑡𝑡4 = Now()

DEL_RESP: 𝑡𝑡4 || 𝐶𝐶𝐶𝐶2

DEL_RESP
Now have 𝑡𝑡1,
𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4 and
𝐶𝐶𝐶𝐶1, 𝐶𝐶𝐶𝐶2

SYNC: 𝑡𝑡1 || 𝐶𝐶𝐶𝐶1

DEL_REQ: 𝑡𝑡3 || 𝐶𝐶𝐶𝐶2

Figure 2: PTP two way time transfer (TWTT) with one trans-

parent clock.

cumulatively to the correction fields of on-the-fly messages. PTP

assumes a symmetric path delay 𝛿 unless the asymmetry between

up-link and down-link path delay is known. The offset 𝜃 and path

delay 𝛿 can be derived as:

𝜃 =
(𝑡2 − 𝑡1 − 𝑐1) − (𝑡4 − 𝑡3 − 𝑐2)

2

𝛿 =
(𝑡2 − 𝑡1 − 𝑐1) + (𝑡4 − 𝑡3 − 𝑐2)

2

(1)

For the clock drift rate 𝛽 − 1, PTP assumes a constant clock rate

𝛽 and leverages the offset measured by the current round 𝜃 (𝑡𝑚1
)

and 𝑙𝑡ℎ round later 𝜃 (𝑡𝑚𝑙
) to get it. 𝑙 is an adjustable parameter

chosen by the clients.

𝛽 =
𝜃 (𝑡𝑚𝑙

) − 𝜃 (𝑡𝑚1
)

𝑡𝑚𝑙
− 𝑡𝑚1

(2)

2.2 PTP Vulnerabilities

The vanilla version of PTP was designed decades ago and has no

built-in security mechanism. Recently a revised version of PTP [3]

discusses several cryptographic authentication mechanisms, includ-

ing group key-based direct authentication and TELSA-based de-

layed authentication [32] to support message authentication. How-

ever, these security mechanisms are unable to address malicious

insiders [24] and they are not widely adopted and implemented,

making PTP almost completely open to all kinds of attacks. In this

work, we categorize the attackers into two main classes: network

adversaries, who can observe and modify PTP traffics but do not

have essential secret keys or credentials to break the cryptography

primitives; and malicious insiders, who are compromised legitimate

participants of PTP networks.

Network Adversaries. Upon initial design, PTP adopted no secu-

rity mechanism and can be easily disrupted by simple network-level

attacks such as message spoofing, interception, and modification.

63

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Shanghao Shi, et al.

Figure 3: PTP testbed.

[6, 13] introduce several practical fatal network-level time-shifting

attacks and validate their feasibility over real-life PTP networks.

The symmetric key-based authentication mechanism proposed by

the revised standard is also vulnerable to identity spoofing attacks

such as rogue grand master attacks [24]. To address all these issues,

[24] proposes an elliptic curve-based and public-key-based authen-

tication scheme to establish the authenticity of network clocks. This

mechanism can effectively rule out network adversaries by adding

small additional overhead to the system.

Malicious Insiders.We consider the malicious insiders to be com-

promised legitimate participants that possess enough secret keys to

bypass the cryptography authentication mechanisms. They may be

compromised servers that generate malicious messages from the

very beginning or compromised man-in-the-middle (MitM) attack-

ers that modify on-the-fly PTP packets. They cannot be prevented

by cryptography methods and pose a great threat to reliable PTP

operation. Under the current single-source, tree-structured archi-

tecture, it is nearly impossible to detect these attackers cause the

downstream clients give full trust to upstream servers and inter-

mediate nodes and there is no way to detect them if they become

malicious. In this work, we focus on addressing the most challeng-

ing malicious insiders.

3 ATTACK DEMONSTRATION:

COMPROMISING PTP NETWORK TIMING

3.1 Experiment Setting

In this section, we demonstrate our experiment about how to

shift the time of a victim node on a real IoT testbed. The testbed, as

shown in figure 3, contains three nodes including one server node

and two client nodes. The server node consists of one Raspberry

Pi 4 device and one plug-in GPS hat. The GPS hat can synchronize

its clock with the satellites and transfer this nano-second level

accurate timing to the Raspberry Pi board, making it a proper time

source. The two client nodes are standard Raspberry Pi 4 boards and

all three nodes are interconnected via Ethernet. For PTP software,

we choose the commonly used implementations – PTPD [23] and

LinuxPTP [26] as the victim implementations. PTPD is a classic

and well-received PTP daemon on the Linux operating system

and supports an older version of PTP standard [18]. LinuxPTP is

an implementation of newer PTP standard [3] and supports more

profiles. In this work, we launched our attack over the default,

unicast, and telecommunication profiles of LinuxPTP.

Attack Threat Model. The attacker is assumed to compromise

one node in the time synchronization network, either the server

node or a slave node. The attacker shall be able to monitor inbound

PTP traffic, get access to the security credentials he received or

assigned, and generate and transmit malicious PTP packets. To bet-

ter understand PTP time-shifting attacks, we adopt a rather weak

attack model as the compromised device is a client node because

the compromised server and MitM attackers are too strong and it

is straightforward and trivial to launch time-shifting attacks with

such strong attackers, since these attackers can directly generate

malicious packets. We are going to investigate the following four

questions in this section: (a) Can a compromised client node jeop-

ardize the operation of others in the current PTP networks? (b) If
so, to what extent can they infect the time of the victim node? (c)
Can the current defense mechanisms counter these attackers? (d)
Will our timing attack cause consequences to a real system?

3.2 Insider Time Shifting Attack

We present an insider time-shifting attack launched by a com-

promised client (the client node 1 in the testbed). The attacker’s

general attack strategy is first to elect himself to build up a fake

network hierarchy and then craft malicious PTP packets to shift

the time of a chosen victim node. The attack can be carried out in

the following four steps:

• Phase 1: Clock Information Extraction. To know the cur-

rent GM’s clock quality, the attacker 𝑛𝑎𝑑𝑣 reads the current

transmitting ANNOUNCE messages 𝐴𝑁𝑁ℎ on its UDP port

320 and extracts the current GM’s clock quality information

𝑞ℎ in message payloads.

• Phase 2: Priority Inversion. The attacker generates a fake

clock quality payload 𝑞𝑎𝑑𝑣 that has higher clock quality than

the legitimate 𝑞ℎ according to the BMCA-defined clock qual-

ity comparison rules. The attacker can increase the clock pri-

ority by one or label the clock type as an ultra-high precision

atomic clock. The attacker then ensembles a malicious AN-

NOUNCE message 𝐴𝑁𝑁𝑎𝑑𝑣 according to the authentication

mechanism used in the system. The message contains a PTP

header, the fake clock quality payload 𝑞𝑎𝑑𝑣 , and a necessary

signature or message authentication code used to pass the

authentication process. If the system uses digital signature-

based method, 𝐴𝑁𝑁𝑎𝑑𝑣 = 𝑝𝑘𝑛𝑖 | |𝑞𝑎𝑑𝑣 | |𝑠𝑖𝑔𝑠𝑘𝑛𝑖 . If uses the
symmetric key -based method, 𝐴𝑁𝑁𝑎𝑑𝑣 = 𝑞𝑎𝑑𝑣 | |𝑀𝐴𝐶𝑠𝑘𝑛𝑖

.

• Phase 3: Injection and Confirmation. The attacker broad-

casts𝐴𝑁𝑁𝑎𝑑𝑣 periodically through UDP port 320 at the same

speed as a normal grand-master clock. The correct transmit-

ting interval can be obtained either through the PTP con-

figuration files or through continuous monitoring of PTP

grandmaster’s behaviors. The attacker sniffs the incoming

messages on this port at the same time and if the attacker

fails to receive any incoming ANNOUNCE message for a

certain time interval 𝑇𝑎𝑑𝑣 , there is a high probability that

nodes in the network have already taken 𝑛𝑎𝑑𝑣 as the new

grand-master. In practice, 𝑇𝑎𝑑𝑣 is not a long time period and

we usually observed it to be within 10 seconds in our experi-

ment before the attacker seized the grand-master position.

64

MS-PTP: Protecting Network Timing from Byzantine Attacks WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

(a) 𝑑 as a cumulative delay (b) 𝑑 as a constant delay (c) 𝑑 as a random delay

Figure 4: Time shifting attack results over PTP implementation PTPD and LinuxPTP. The overall trend shows the effective

manipulation of the victim clock offset.

• Phase 4: Time Shifting. After the confirmation, the at-

tacker starts the PTP engine to send erroneous information.

It follows the normal PTP workflow (i.e. TWTT) but modifies

the timestamp field of the SYNC message only to its victim

by adding a delay 𝑑 to 𝑡1. By protocol, the offset measured at

the victim device is shifted by 𝑑/2. This malicious 𝑆𝑌𝑁𝐶𝑎𝑑𝑣
message is also attached with a proper digital signature or

message authentication code generated by the shared cre-

dentials between the attacker and the victim node.

3.3 Attack Results

We implemented our attack on the testbed with the Python Scapy

tool [33], which allows us to sniff and generate arbitrary network

packets. We assembled PTP packets according to both the PTP

standard and attack methods including crafting proper IP, UDP,

and PTP headers, as well as generating PTP payloads and appended

signatures/MACs. To evaluate the capability of the attacker, we

added the malicious delay 𝑑 in three different ways—constantly

(2s), randomly (mean 1.5s, standard deviation (std) 500ms), and

cumulatively (1.8s per 120s). Figure 4 shows the clock offsets of the

victim node (client node 2) under different delay-adding methods.

We can find that the time (offset) of the victim nodewas significantly

shifted consistently with the way they were manipulated under

different PTP implementations and profiles. We observed that the

offsets of some LinuxPTP profiles were not immediately shifted

when the attacks were launched. There were about 5-10s of delays

before they were shifted. But the overall trend of their performance

was in line with how they were manipulated. Because the delays

we introduced were very large (seconds level) compared to the

no-attack clock offsets (microseconds level), the no-attack system

offsets became nearly invisible in the figure.

3.4 Case Study: Attack Consequence on a Real

Robotic Platform.

To further evaluate the effect of time de-synchronization on real

systems, we set up a cloud-based indoor delivery system based on

the Amazon RoboMaker [8]. The system consists of an Amazon

EC2 cloud server and a Turtlebot 3 robot [37] (as shown in Figure.

5(a)). The robot receives task missions and sensor inputs from the

cloud, allowing the robot to navigate in the physical environment

according to the commands from the server. The robot takes inputs

from multiple sensors such as a camera, inertial measurement unit,

and LiDAR. Each sensor is implemented as a separate node in the

network and delivery the data via UDP packets. The sensor data is

appended with timestamps, which are used to synchronize among

different sensors, achieving a consistent sensing result. To emulate

the consequence of our PTP timing attack, we added malicious

delays to the sensing inputs. This simulates the situation in which

inter-vehicle network synchronization is compromised and the

sensor inputs are temporally misaligned. Our goal is to investigate

whether the timing misalignments, more precisely submillisecond-

level or even subsecond-level misalignments, can cause interference

with the operation of a real robot.

Figure 5(b) shows the trajectory under normal circumstances

as well as the trajectory under attack. It can be observed that the

robot navigates well without attack. Conversely, the adversary node

can easily trick the desynchronization for up to 2 seconds, leading

the robot to fail in localizing itself and navigating to the desired

location. As shown in figure 5(b), with a falsely estimated position,

the robot arbitrarily moved around the environment and hit the

obstacles.

3.5 Attack Analysis and Discussion

With these results, we can answer the questions we have raised

before. The compromised client node can shift the time of any

victim node arbitrarily by changing the way how it adds delay

without any limitation. The reason behind this time-shifting attack

is that there lacks a proper clock quality verification mechanism

and any node can claim itself to be a high-priority clock source

and win the grand-master election process. The current central-

ized, tree-structured network hierarchy makes things worse for it

faces single-point-of-failure and one falsely elected grand master

can disrupt the operation of the whole network. While in theory,

the system can employ a customized designed public key-based

authentication and certificate management system to rule out the

spoofing and Sybil attacks [24], they are costly and not used in

practice. Furthermore, if we further consider the time servers and

MitM nodes are compromised, this defense mechanism cannot help.

65

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Shanghao Shi, et al.

(a) Turtlebot3.

Starting
point

(b) Control deviations on trajectories.

Figure 5: The consequence of de-synchronization attack on

Turtlebot3.

Our defense mechanism defends against insider attacks from

a new perspective and can be used in parallel with the current

cryptography-based authentication mechanism to further boost

PTP’s security and reliability. We turn to establish a fault-tolerant

and robust time synchronization mechanism, yet some insiders are

compromised to exhibit arbitrary behaviors, we assume themajority

of the timing devices to be honest. We adopt the fundamental idea

of using multiple sources to counter Byzantine sources from the

very famous Byzantine fault tolerance state machine replication

(BFT-SMR) scheme. This idea is in line with PTP’s developing trend

– the newest version has already dictated the use of redundant

servers to build robust synchronization services [3]. Fortunately,

the current PTP leaves room for the simultaneous existence of

multiple servers. This can be achieved by properly configuring

the PTP software’s configuration file. Each PTP client can open

up multiple PTP sessions, with each one having its own domain

number. By design, different PTP sessions in different domains do

not cause interference to others and within each domain, there can

be a unique time server. The remaining critical question is how to

select a reliable measurement from a set of potentially malicious

ones. We will discuss this problem in the next section.

4 MS-PTP: A ROBUST TIME ESTIMATION

4.1 System Model

Countering Byzantine failure is a fundamental problem in dis-

tributed networks. A lot of literature has introduced plenty of Byzan-

tine fault-tolerant (BFT) schemes. The most famous BFT schemes

may be the state machine replication (SMR) solution such as Prac-

tical BFT (PBFT) [12] and Tendermint [11]. The fundamental idea

of these schemes is to use redundant nodes to counter Byzantine

minority nodes. We adopt this fundamental idea by designing our

Byzantine resilient PTP network using multiple time sources. We

also take the threshold assumption from the BFT-SMR schemes, i.e.

the number of malicious nodes does not exceed a certain portion of

the total population. However, there are key differences in the basic

assumptions between classic BFT mechanisms and the problem we

are investigating, as we will discuss in the following parts.

Network Model. We assume there are𝑚 synchronization sources

in the network and each client can connect to 𝑛 (𝑛 ≤ 𝑚) of them to

initiate the synchronization procedure. As a result, an individual

client is able to receive𝑛 independentmeasurements (𝑑1, 𝑑2, · · · , 𝑑𝑛)
from 𝑛 sources in one synchronization round 𝑇 . Considering the

random measurement errors and uncertainty introduced along the

communication paths, which is unavoidable in the communication

channels, we assume the honest measurements follow the normal

distribution of 𝑑𝑖 ∼ N(𝑔, 𝜎2

𝑖
), where 𝑔 refers to the correct measure-

ment result under ideal conditions and 𝜎2

𝑖
refers to the uncertainty

level [17]. The key difference between our assumption and the

classic BFT-SMR schemes is that the clients in the synchronization

problem are not assumed to know the underlying correct measure-

ment 𝑔. Therefore, instead of receiving multiple identical correct

measurements and a few malicious ones, a time synchronization

client is more likely to receive a set of measurements that are differ-

ent from each other, making it a difficult and non-trivial problem

to counter Byzantine measurements among them.

Uncertainty Level. The standard deviation 𝜎𝑖 of an honest time

source is considered significantly smaller than the system’s required

accuracy level 𝑟 . In fact, the probability that a measurement from

an honest source violates the requirement 𝑟 is 𝑃 (|𝑑𝑖 − 𝑔| > 𝑟) =

1 − 1√
2𝜋𝜎𝑖

∫ 𝑟

−𝑟 𝑒
− 𝑥2

2𝜎2

𝑖 d𝑥 or in the form of Gaussian error function

𝑃 (|𝑑𝑖 − 𝑔| > 𝑟) = erfc(𝑟√
2𝜎𝑖

). This probability is considered as the

unreliability rate of the system and is considerably small, otherwise,

there will be a non-negligible probability that the requirements are

broken. For example, to achieve 5G URLLC’s 10
−7

error rate, 𝑟

satisfies 𝑟 > 5.3𝜎𝑖 .

MS-PTP Threat Model.We consider insider attackers to exhibit

arbitrary behaviors such as delaying and manipulating messages

sent to the victim. They may also collude with each other. However,

due to the protection from the secure communication channel and

honest non-ad-hoc networks, since this scenario provides the best

reflection of existing network architecture, one malicious node

cannot alter the messages from other nodes in the network. As a

consequence, any time synchronization session involving an insider

attacker becomes a Byzantine session where a certain number of

arbitrary timing measurements are delivered to the clients. The

only limitation of the adversary’s capability is that they are the

minority of the total population and the number of them is smaller

than a threshold 𝑓 . We suppose the compromised measurements

do not exceed one-third of the total population.

System Goal. The ultimate goal of our system is to ensure high-

precision time synchronization across the PTP network. Given that

more than 2/3-majority of measurements are honest (𝑛 ≥ 3𝑓 + 1)

while others are Byzantium, PTP clients shall be guaranteed to have

the final synchronization error smaller than a certain bound that is

independent of the number of server population 𝑛 and Byzantine

sessions 𝑓 .

4.2 MS-PTP-Byzantine Resilient Measurement

Aggregation

Based on our assumption, a PTP client receives 𝑛 measurements

in one synchronization round 𝑇 and 𝑓 of them are compromised

66

MS-PTP: Protecting Network Timing from Byzantine Attacks WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

Algorithm 1 MS-PTP

Input: The number of reachable servers 𝑛 and the desired number

of faults to counter 𝑓 (𝑓 ≤ ⌊𝑛
3
⌋).

Output: System time updated with robust aggregated result 𝑜 .

1: procedure Periodical Calibration

2: function Get measurements

3: for 𝑖 in {1, 2, · · · , 𝑛} do
4: Get 𝑣𝑖 from server 𝑛𝑖 .
5: end for

6: return 𝑣1, 𝑣2, · · · , 𝑣𝑛
7: end function

8: function Measurements Aggregation

9: for 𝑖 in {1, 2, · · · , 𝑛} do
10: 𝑆 (𝑣𝑖) =

∑
𝑗∈𝑁𝑀 (𝑣𝑖)

𝑣𝑖 − 𝑣 𝑗

2

11: end for

12: 𝐺 = (𝑓 + 1) arg min𝑖∈{1,2,3,· · · ,𝑛} 𝑆 (𝑣𝑖)
13: 𝑜 = 1

𝑓 +1

∑
𝑤∈𝐺 𝑤

14: return o

15: end function

16: function Timing Updation

17: Update system time with 𝑜 .

18: end function

19: end procedure

and follow arbitrary distributions. We denote these measurements

as (𝑑1, 𝑑2, · · · , 𝑑𝑛−𝑓 , 𝑏1, 𝑏2, · · · , 𝑏 𝑓), where (𝑑1, 𝑑2, · · · , 𝑑𝑛−𝑓) refer
to the honest measurements and (𝑏1, 𝑏2, · · · , 𝑏 𝑓) refer to the Byzan-
tine measurements. The general representation of measurements

(without knowing its honesty or not) are 𝑣𝑖 (𝑖 = 1, 2, · · · , 𝑛). We first

formally define a robustness criterion for the non-parametric accu-

racy requirement (in system goal) and introduce our aggregation

algorithm A∗
that satisfies this goal.

Definition 1 (Aggregation Robustness). We define that an
aggregation rule A is 𝑟 -robust when its output result 𝑜 = A(𝑑1, 𝑑2,

· · · , 𝑑𝑛−𝑓 , 𝑏1, 𝑏2, · · · , 𝑏 𝑓) satisfies ∥E[𝑜] − 𝑔∥ < 𝑠 < 𝑟 , where 𝑠 is a
determined bound independent of 𝑓 and 𝑛. 𝑟 is the system’s synchro-
nization requirement.

Byzantine-resilient Aggregation Algorithm A∗
.We define a

score 𝑆 (𝑣𝑖) =
∑

𝑗∈𝑁𝑀 (𝑣𝑖)

𝑣𝑖 − 𝑣 𝑗

2

, where 𝑁𝑀 (𝑣𝑖) includes the
2𝑓 nearest measurements of 𝑣𝑖 . Based on this definition, our aggre-

gation algorithm A∗
can be expressed as:

𝐺 = (𝑓 + 1) arg min

𝑖∈{1,2,3,· · · ,𝑛}
𝑆 (𝑣𝑖)

𝑜 =
1

𝑓 + 1

∑︁
𝑤∈𝐺

𝑤
(3)

where (𝑓 + 1) arg min𝑖∈{1,2,3,· · · ,𝑛} 𝑆 (𝑣𝑖) refers to the set of 𝑣𝑖

with the 𝑓 + 1 smallest scores; 𝑜 denotes the output. Algorithm 1

demonstrates the workflow of MS-PTP. MS-PTP takes two param-

eters including the total number of servers 𝑛 and the number of

failures 𝑓 as the system input. The clients do not know the exact

number of 𝑓 and usually need to select their desired number of

failures to counter. To maximize the fault-tolerant capability, PTP

clients usually select 𝑓 = ⌊𝑛
3
⌋.

4.3 Theoretical Proofs

Theorem 1 (Correctness). The Byzantine-resilient aggregation
algorithm A∗ is

√
2𝜎𝑚𝑎𝑥 -robust, where 𝜎𝑚𝑎𝑥 = max{𝜎1, ..., 𝜎𝑛−𝑓 },

in which 𝜎𝑖 (𝑖 ∈ {1, 2, · · · , 𝑛 − 𝑓 }) is the standard deviation of honest
measurement 𝑑𝑖 . To prove this result, the following two lemmas are
necessary. The proof of lemma 1 is trivial and we present the proof
of lemma 2 in the appendix. We focus on the mathematical proof of
our main result: theorem 1.

Lemma 1. Define 𝐷 (𝑑𝑖) =
∑︁
𝑗≠𝑖

𝑑𝑖 − 𝑑 𝑗

2 as the sum of the dis-

tances between 𝑑𝑖 (for 𝑖 ∈ (1, 2, · · · , 𝑛 − 𝑓)) and the other honest
measurements. It is obvious to have 𝑆 (𝑑𝑖) ≤ 𝐷 (𝑑𝑖) for not all the
honest measurements are always within 𝑁𝑀 (𝑑𝑖).

Lemma 2. There exists at least 𝑓 +1 honest measurements, denoted
as 𝑑𝑘 ∈ B, that satisfies E[𝐷 (𝑑𝑘)] ≤ (2𝑓 + 2)𝜎2

𝑚𝑎𝑥 .

[Proof of Theorem 1] For a measurement 𝑣𝑖 , we define the set of
honest measurements in its 2𝑓 -nearest neighborhood as 𝐻 (𝑣𝑖), with
∥𝐻 (𝑣𝑖)∥ = 𝛿ℎ (𝑣𝑖) and the set of Byzantine measurements in its 2𝑓 -
nearest neighborhood as 𝐵(𝑣𝑖), with ∥𝐵(𝑣𝑖)∥ = 𝛿𝑏 (𝑣𝑖), Obviously,
𝛿ℎ (𝑣𝑖) + 𝛿𝑏 (𝑣𝑖) = 2𝑓 .

∥E𝑜 − 𝑔∥2 = ∥E[1

𝑓 + 1

𝑓 +1∑︁
𝑖=1

𝑤𝑖] − 𝑔∥2

= ∥E[1

𝑓 + 1

𝑓 +1∑︁
𝑖=1

𝑤𝑖] −
1

𝑓 + 1

𝑓 +1∑︁
𝑖=1

E
∑︁

𝑗∈𝐻 (𝑤𝑖)

1

𝛿ℎ (𝑤𝑖)
𝑑 𝑗 ∥2

= ∥ 1

𝑓 + 1

𝑓 +1∑︁
𝑖=1

E[𝑤𝑖 −
∑︁

𝑗∈𝐻 (𝑤𝑖)

1

𝛿ℎ (𝑤𝑖)
𝑑 𝑗] ∥2

(AM-QM Ineq.) ≤ 1

𝑓 + 1

𝑓 +1∑︁
𝑖=1

∥E𝑤𝑖 −
∑︁

𝑗∈𝐻 (𝑤𝑖)

1

𝛿ℎ (𝑤𝑖)
𝑑 𝑗 ∥2

(Jessen’s Ineq.) ≤ 1

𝑓 + 1

𝑓 +1∑︁
𝑖=1

E∥𝑤𝑖 −
∑︁

𝑗∈𝐻 (𝑤𝑖)

1

𝛿ℎ (𝑤𝑖)
𝑑 𝑗 ∥2

=
1

𝑓 + 1

𝑓 +1∑︁
𝑖=1

E∥ 1

𝛿ℎ (𝑤𝑖)
∑︁

𝑗∈𝐻 (𝑤𝑖)
(𝑤𝑖 − 𝑑 𝑗)∥2

(AM-QM Ineq.) ≤ 1

𝑓 + 1

𝑓 +1∑︁
𝑖=1

1

𝛿ℎ (𝑤𝑖)
E

∑︁
𝑗∈𝐻 (𝑤𝑖)

∥(𝑤𝑖 − 𝑑 𝑗)∥2

(4)

If𝑤𝑖 is an honest measurement, E 1

𝛿ℎ (𝑤𝑖)
∑

𝑗∈𝐻 (𝑤𝑖) ∥(𝑤𝑖 − 𝑑 𝑗)∥2

≤ 𝛿ℎ (𝑤𝑖)2𝜎2

max

𝛿ℎ (𝑤𝑖) = 2𝜎2

max
. Else, if 𝑤𝑖 is a Byzantine measurement,

1

𝛿ℎ (𝑤𝑖) E
∑

𝑗∈𝐻 (𝑤𝑖) ∥(𝑤𝑖−𝑑 𝑗)∥2 ≤ 1

𝛿ℎ (𝑤𝑖) E[𝑆 (𝑤𝑖)], which by Lemma

2 satisfies 1

𝛿ℎ (𝑤𝑖) E
∑

𝑗∈𝐻 (𝑤𝑖) ∥(𝑤𝑖 − 𝑑 𝑗)∥2 ≤ 2(𝑓 +1)𝜎2

max

𝛿ℎ (𝑤𝑖) . For a

Byzantinemeasurement,𝛿ℎ (𝑤𝑖) ≥ 𝑓 +1 and 1

𝛿ℎ (𝑤𝑖) E
∑

𝑗∈𝐻 (𝑤𝑖) ∥(𝑤𝑖−
𝑑 𝑗)∥2 ≤ 2𝜎2

𝑚𝑎𝑥 .

67

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Shanghao Shi, et al.

Combine all the results together, we have:

∥E𝑜 − 𝑔∥2 ≤ 1

𝑓 + 1

𝑓 +1∑︁
𝑖=1

1

𝛿ℎ (𝑤𝑖)
E

∑︁
𝑗∈𝐻 (𝑤𝑖)

∥(𝑤𝑖 − 𝑑 𝑗)∥2

≤ 1

𝑓 + 1

(𝑓 + 1)2𝜎2

𝑚𝑎𝑥 = 2𝜎2

𝑚𝑎𝑥

(5)

In summary, we can prove that ∥E[𝑜] − 𝑔∥ ≤
√

2𝜎𝑚𝑎𝑥 , which is

considered significantly smaller than the synchronization require-

ments 𝑟 .

4.4 Analysis

Byzantine Resilience.We have provided a rigorous mathematical

proof for the Byzantine resilience of our defense mechanism. The

attackers, no matter what kind of behaviors they are doing, are

not supposed to break the deterministic error bound. One poten-

tial concern the readers raise may be: Can the attackers shift the

error bound of the aggregated outputs if they know the defense

mechanism and send erroneous measurements accordingly? We

investigate the following attack case to provide an intuitive answer.

Case Study: Adaptive Attack. The attackers collude with each

other and send malicious measurements near the proved error

bound rather than typical random, constant, and cumulative values.

The attacker’s goal is to gradually break the error bound and shift

the victim’s time. The attack can be conducted in two steps:

• Phase 1: Standard Deviation Estimation. The attackers

conclude with each other and thus know all the honest mea-

surements. The attackers estimate the standard deviation of

the honest measurements as 𝑠𝑡𝑑𝑎𝑑𝑣 =

√︂∑𝑛−𝑓
𝑖=1

(𝑑𝑖− ¯𝑑)2

𝑛−𝑓 −1
.

• Phase 2: AddingMalicious Measurements. The attackers

introduce malicious measurements trying to shift the error

bound. The malicious measurements can be

√
2𝑠𝑡𝑑𝑎𝑑𝑣 + 𝜖 ,

where

√
2𝑠𝑡𝑑𝑎𝑑𝑣 refers to the attacker’s estimation of the er-

ror bound and 𝜖 refers to the attacker’s desired time shifting

direction. Note that 𝜖 shall be gradually increased from a

small value for it will be easily detected and discarded if they

are too far away from the error bound.

We took a simulation to investigate and visualize the impact

of the adaptive attack and our defense mechanism. The attackers

launched the adaptive attack by having 𝜖 as a gradually increasing

value (from 0 to 5𝜎𝑚𝑎𝑥) that tries to shift the aggregated result

slowly or just having 𝜖 as a constant small value (𝜖 = 2 −
√

2𝜎𝑚𝑎𝑥)

that tries to shift the distribution of the aggregated results out

of the upper or lower error bound. We took our simulation 150

times with the parameters from actual implementations of MS-

PTP (𝑔 = 13.95𝜇𝑠 and 𝜎𝑖 = 4.36𝜇𝑠). Figure 6 is our simulation result,

where a histogrammap is plotted to show the distribution of honest,

malicious, and aggregated measurements. We can observe that the

attackers failed to do so and only a few points locate out of the error

bounds. The simulation result is consistent with our theoretical

proof, validating our mathematical results.

Scalability. MS-PTP ensures a deterministic error bound irrele-

vant to the number of participants. As a result, the theoretical

error bound of MS-PTP does not change when the network size

(a) 𝜖 as a constant small value. (b) Gradually increased 𝜖 .

Figure 6: Adaptive attack over MS-PTP.𝑈 refers to the upper

bound and 𝐿 refers to the lower bound.

becomes larger. Table 1 demonstrates MS-PTP’s performance under

the adaptive attack in our simulations. We took the state-of-the-art

Byzantine fault-tolerant gradient (data) aggregation mechanisms

adopted from the federated learning frameworks as a comparison.

We took the adaptive attack because it adds malicious measure-

ments near the theoretical bound and can be used to explore the

error bound in practice. When there is no attack, the system mea-

sures the offset as 𝑔 = 13.95𝜇𝑠 and 𝜎𝑖 = 4.36𝜇𝑠 . We increased the

size of the network from n=4 to n=28 and checked MS-PTP’s per-

formance under the attack. We can observe that MS-PTP does not

achieve the best performance. But when the network size becomes

larger, MS-PTP achieves the best performance among all mecha-

nisms. The output result of MS-PTP remains to be stable and does

not increase significantly with larger network size.

Complexity.MS-PTP requires multiple (𝑛) redundant servers in

the network. As a result, the communication overhead is increased

by 𝑛× on the client side. On the server side, MS-PTP does not

impose a lot of extra communication overhead for each server that

operates in its own domain as a usual one. MS-PTP is a lightweight

protocol and does not introduce a lot of computation overhead.

The algorithm can be executed within several milliseconds. This is

crucial because the algorithm is conducted periodically and a large

execution time will pose a significant overhead to the system.

Backward Compatibility.MS-PTP is fully compatible with the

current PTP standard. In the cases there are not enough PTP servers

such as in the CPS systems, MS-PTP may also resort to alternative

external redundancy such as GPS sources and NTP sources. There

have already been some cross-protocol synchronization manage-

ment tools such as Chronyd [34] to help fetch from these available

sources.

5 EXPERIMENTS AND IMPLEMENTATIONS

5.1 Byzantine Resilience

We implemented MS-PTP on our PTP testbed to evaluate its

performance on a real IoT network, where the experimental set-

tings are the same as the attack experiments in Section 3. We added

an additional Raspberry Pi to the network and configured all four

nodes as server nodes to meet the network redundancy required by

MS-PTP. We selected a desktop as a PTP client and configured it to

receive measurements from different devices simultaneously. The

PTP client captured and took the IP address (in LAN) of all four

68

MS-PTP: Protecting Network Timing from Byzantine Attacks WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

Table 1: MS-PTP scalability performance (measured offset in microseconds) under attack.

Scheme Fault Tolerance Proved Error Bound 𝑛 = 4 𝑛 = 10 𝑛 = 16 𝑛 = 22 𝑛 = 28

Krum [10, 19] 𝑛 ≥ 2𝑓 + 3

√︂
2𝑛 − 2𝑓 + 2𝑓 (𝑛−𝑓 −2)+2𝑓 2 (𝑛−𝑓 −1)

𝑛−2𝑓 −2
𝜎𝑚𝑎𝑥 15.407 18.11 20.537 22.478 24.002

Bulyan [19, 21] 𝑛 ≥ 4𝑓 + 3 Same as Krum - - - - -

Median [19, 39] 𝑛 ≥ 2𝑓 + 1

√︁
𝑛 − 𝑓 𝜎𝑚𝑎𝑥 15.880 18.231 19.403 20.167 20.706

Trimmed Mean [39] 𝑛 ≥ 2𝑓 + 1

√︂
2(𝑏+1) (𝑛−𝑓)
(𝑛−𝑓 −𝑏)2

𝜎𝑚𝑎𝑥 , 0 ≤ 𝑏 ≤ ⌊ 𝑛
2
⌋ 16.205 18.454 19.457 20.153 20.607

Phocas [19, 38] 𝑛 ≥ 2𝑓 + 1

√︂
4 + 12(𝑏+1) (𝑛−𝑓)

(𝑛−𝑓 −𝑏)2
𝜎𝑚𝑎𝑥 , 0 ≤ 𝑏 ≤ ⌊ 𝑛

2
⌋ 18.667 27.413 36.142 44.827 54.447

MS-PTP 𝑛 ≥ 3𝑓 + 1

√
2𝜎𝑚𝑎𝑥 15.606 16.746 17.233 17.474 17.552

(a) MS-PTP accuracy performance under attack (𝑐𝑢 – cumulative delay, 𝑐𝑠 – constant

delay, 𝑟𝑑 – random delay)

(b) MS-PTP communication overhead. (c) MS-PTP computation overhead.

Figure 7: MS-PTP performance on real IoT testbed.

servers and configured its profile to establish four independent ses-

sions with each server. We built up MS-PTP on top of PTP engines

with Python code by taking measurements from PTP sessions and

aggregating these measurements to obtain a robust timing estima-

tion. This testbed supports hardware validation when the malicious

population 𝑓 = 1 and the number of servers 𝑛 = 3𝑓 + 1 = 4. We con-

ducted time shifting attack on the compromised node and observed

the synchronization performance of the PTP client who employed

MS-PTP as a countermeasure.

Fig. 7 shows MS-PTP’s performance against time shifting attack,

in comparison with the MEAN aggregation method that simply

takes the average of measurements as a benchmark. In the exper-

iment, the malicious delay 𝑑 was added in constant (2s), random

(mean 1.5s, standard deviation (std) 500ms), and cumulative (1.8s

per 120s) ways inconsistent with the attack settings in section 3.

Note that the y-axis is plotted in a logarithm scale to show the

results’ accuracy level. We can observe that without MS-PTP, the

MEAN aggregation’s clock offset is shifted by several seconds (10
0
).

With MS-PTP, the system’s measured offsets are maintained at a

level of 10 𝜇𝑠 (10
−5
), nearly the same as the results without attack.

5.2 Communication and Computation

Overhead

We configured each device to emulate multiple servers in order

to testify to the overhead introduced by MS-PTP when the net-

work size becomes larger. For each Raspberry Pi, we launched four

PTP sessions and pinned each of them on an independent CPU

core respectively. Since Raspberry Pi 4 used in our experiments

has a quad-core CPU, we were able to emulate up to 16 PTP ses-

sions/servers in this way. Fig. 7 shows the communication and

computation overhead introduced by MS-PTP. For the communi-

cation overhead, we monitored the bandwidth consumed by the

UDP ports 319 and 320 used by PTP during our experiment on the

testbed. We observed tens of kilo bytes-level bandwidth consump-

tion in our experiments. The bandwidth consumption is linearly

increasing with respect to 𝑛 and we take it as a small overhead

when 𝑛 is not large. For the computation overhead, we checked

MS-PTP’s execution time on one PC and Raspberry Pi. We can also

observe a linear increase in the execution time with respect to the

server population. MS-PTP’s execution time is very small (< 1 ms)

on both Raspberry Pi and PC.

5.3 Compatibility

Another important advantage of MS-PTP is that it can not only

be used by PTP, but also by the other popular time synchronization

mechanisms. We validated MS-PTP’s compatibility with NTP and

GPS synchronization methods by introducing NTP servers and GPS

servers as redundant time sources. We considered the existence

of one Byzantine insider, but with either 3 NTP servers or 2 NTP

servers plus 1 GPS server serving as the honest redundancy. In these

cases, MS-PTP is not only built upon PTP engines but also upon

NTP and GPS engines. Fortunately, all of these synchronization

mechanisms provide users with convenient interfaces. Any user

69

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Shanghao Shi, et al.

with sudo priority can get access to them and implement MS-PTP

on top of them. Table 2 shows the accuracy performance on our

real testbed with these settings when a constant 100 ms delay 𝑑

is added. We can observe that redundant NTP servers do provide

a fault-tolerant guarantee for the synchronization service. The

synchronization accuracy level was reduced from 10𝑚𝑠 level after

the attack, to a normal NTP server’s < 1𝑚𝑠 level. However, because

NTP servers’ accuracy was worse than PTP servers, the aggregation

performance was reduced to NTP accuracy. When a GPS server

was added, the aggregation accuracy became better. This indicates

that the more accurate servers we are using, the better accuracy

MS-PTP can achieve.

6 RELATEDWORK

6.1 Network Timing Attack and Defense

The original version of NTP and PTP specifies no built-in secu-

rity mechanism and simple network-level attacks can disrupt them

easily. Malhotra et al. [27] introduce the attacks launchedwith unau-

thenticated NTP traffic, including on-path time-shifting attacks and

off-path DoS attacks. Later in [28], Malhotra et al. demonstrate the

security vulnerabilities of the NTP datagram protocol. For PTP,

[6, 13] introduce several fatal network-level time-shifting attacks

and validate their feasibility over real PTP implementations. Itkin

and Wool [24] provide a summary of PTP vulnerabilities and im-

plement the attacks on a popular PTP software PTPD. To counter

these attacks, the latest version of PTP [3] recommends using group

key-based direct authentication and TELSA-based delayed authen-

tication [32] to support message authentication and identity veri-

fication. Furthermore, [24] suggests using an elliptic curve-based

public-key signature scheme to establish the authenticity of net-

work clocks. The series of NTP authentication protocols [16, 22, 36]

build up authenticated communication channels between servers

and clients with appended digital signatures and message authen-

tication codes (MACs). Besides, some stochastic signal processing

methods such as the least square-based [29] and Kalman Filter-

based [20] estimation methods are introduced to safeguard the

timing protocols from malicious noise in the communication paths.

To detect malicious timing servers, [30] provides an anomaly detec-

tion mechanism with the help of redundant time sources. Deutsch

et al. [14] propose using redundant servers and customized data

aggregation mechanisms to counter malicious man-in-the-middle

(MitM) attackers in NTP networks. However, as we have discussed,

the security threats imposed by malicious insiders and how to

defend them are largely ignored by the current literature.

6.2 BFT Data Aggregation

Countering against Byzantine measurements among a set of

honest ones is an important problem in data mining, especially fed-

erated learning. Several Byzantine-resilient gradient aggregation

mechanisms have been proposed including Krum [10], Bulyan [21],

trimmed-mean [39], median [19] and Phocas [38]. These mech-

anisms take a similar assumption with our work as the honest

measurements are the majority and follow the same distribution,

while the Byzantine measurements, although the minority ones, can

act arbitrarily. These mechanisms can effectively rule out Byzantine

gradients uploaded from compromised clients with proven error

Table 2: Measured offset with NTP and GPS servers

Scenarios Accuracy mean Accuracy std

Measurements without attack 13.95𝜇𝑠 4.36𝜇𝑠

No redundant servers 37.86𝑚𝑠 2.31𝑚𝑠

3 PTP servers 12.80𝜇𝑠 1.32𝜇𝑠

3 NTP servers 0.974𝑚𝑠 0.551𝑚𝑠

2 NTP, 1 GPS servers 0.576𝑚𝑠 0.578𝑚𝑠

bounds. However, they are not designed for the time synchroniza-

tion problem and their error bounds are not deterministic ones

irrelevant to the network population.

7 DISCUSSION

MS-PTP uses network redundancy to counter Byzantine failures.

However, some Man-in-the-middle (MitM) attackers are too strong

and can not be addressed by MS-PTP. For example, suppose the

attacker controls a choke point, where all the communication ses-

sions between the servers and clients pass through. In that case,

he can add malicious delays, and no matter how many redundant

servers MS-PTP use, still can not find him. Therefore, we recom-

mend that network administrators shall deploy servers in separate

locations with as few joint communication paths as possible to

avoid such MitM attackers. An individual client should also try

to select servers in different geological areas and node-disjoint

communication paths from different sources.

8 CONCLUSION

In this paper, we focus on addressing the Byzantine insider

attacks in time synchronization systems. We first demonstrated

through hardware experiments that the current PTP implementa-

tions are susceptible to a practical insider time-shifting attack, in

which only one malicious insider is able to bring catastrophe to the

time synchronization service. As a countermeasure, we devise a

novel Byzantine-resilient aggregation scheme to generate a high-

fidelity, error-bounded measurement under the assumption that

fewer than one-third of themeasurements are Byzantine-influenced.

We provide rigorous proof and thorough analysis for the theoretical

guarantees that MS-PTP ensures. To evaluate the feasibility and

performance of our new mechanism, we implemented a proof-of-

concept MS-PTP with a combination of hardware experiments and

software implementations in various Byzantine-ridden network

scenarios. The result shows that MS-PTP achieves excellent syn-

chronization accuracy for client clocks under different practical

attacks. Timing is an important attack vector against the CPS/IoT

systems, which have and will be gradually exploited in many time

and safety-critical systems. We hope this paper provides a good

solution for these time-sensitive systems to set up robust time syn-

chronization services and can motivate more research about the

timing vulnerabilities of CPS/IoT systems.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Naval Re-

search under grant N00014-19-1-2621, and the US National Science

Foundation under grants 1837519, 1916902, 1916926, 2154929, and

2154930.

70

MS-PTP: Protecting Network Timing from Byzantine Attacks WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

REFERENCES

[1] 2015. IEEE Approved Draft Standard for Local and Metropolitan Area Networks

- Timing and Synchronization for Time-Sensitive Applications in Bridged Local

Area Networks - Corrigendum 2: Technical and Editorial Corrections. IEEE
P802.1AS_Cor2/D3.0 July 2015 (2015), 1–11.

[2] 2017. IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power

System Applications. IEEE Std C37.238-2017 (Revision of IEEE Std C37.238-2011)
(2017), 1–42. https://doi.org/10.1109/IEEESTD.2017.7953616

[3] 2020. IEEE Standard for a Precision Clock Synchronization Protocol for Net-

worked Measurement and Control Systems. IEEE Std 1588-2019 (Revision of IEEE
Std 1588-2008) (2020), 1–499. https://doi.org/10.1109/IEEESTD.2020.9120376

[4] 2020. IEEE Standard for Local and Metropolitan Area Networks–Timing and

Synchronization for Time-Sensitive Applications. IEEE Std 802.1AS-2020 (Revision
of IEEE Std 802.1AS-2011) (2020), 1–421. https://doi.org/10.1109/IEEESTD.2020.

9121845

[5] 3GPP. 2019. Study on enhancement of Ultra-Reliable Low-Latency Communication
(URLLC) support in the 5G Core network (5GC). Technical Report. 3GPP TR23.725

V16.2.0 (Release16).

[6] Waleed Alghamdi and Michael Schukat. 2020. Cyber Attacks on Precision Time

Protocol Networks—A Case Study. Electronics 9, 9 (2020), 1398.
[7] Waleed Alghamdi and Michael Schukat. 2021. Precision time protocol attack

strategies and their resistance to existing security extensions. Cybersecurity 4, 1

(2021), 1–17.

[8] AmazonRobotics [n. d.]. AWS Robotics. https://aws.amazon.com/robomaker/.

Accessed: 2022-05-1.

[9] Manos Antonakakis, Tim April, Michael Bailey, et al. 2017. Understanding the

mirai botnet. In 26th {USENIX} security symposium ({USENIX} Security 17).
1093–1110.

[10] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.

2017. Machine Learning with Adversaries: Byzantine Tolerant Gradient De-

scent. In Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),

Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/

f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf

[11] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of
blockchains. Ph. D. Dissertation. University of Guelph.

[12] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In

OsDI, Vol. 99. 173–186.
[13] Casimer DeCusatis, Robert M Lynch, William Kluge, John Houston, Paul A

Wojciak, and Steve Guendert. 2019. Impact of cyberattacks on precision time

protocol. IEEE Transactions on Instrumentation and Measurement 69, 5 (2019),
2172–2181.

[14] Omer Deutsch, Neta Rozen Schiff, Danny Dolev, and Michael Schapira. 2018.

Preventing (Network) Time Travel with Chronos.. In NDSS.
[15] VP Business Development. 2019. Accurate timing in financial trad-

ing. https://www.calnexsol.com/en/timing-and-sync-blog-article-display/1386-

accurate-timing-in-financial-trading

[16] Benjamin Dowling, Douglas Stebila, and Greg Zaverucha. 2016. Authenticated

network time synchronization. In 25th {USENIX} Security Symposium ({USENIX}
Security 16). 823–840.

[17] John C Eidson. 2006. IEEE 1588: an Update on the Standard and Its Application.

In Proceedings of the 38th Annual Precise Time and Time Interval Systems and
Applications Meeting. 193–211.

[18] John C Eidson, Mike Fischer, and Joe White. 2002. IEEE-1588™ Standard for

a precision clock synchronization protocol for networked measurement and

control systems. In Proceedings of the 34th Annual Precise Time and Time Interval
Systems and Applications Meeting. 243–254.

[19] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Louis Alexandre Rouault.

2021. Distributed momentum for byzantine-resilient stochastic gradient descent.

In 9th International Conference on Learning Representations (ICLR).
[20] Giada Giorgi and Claudio Narduzzi. 2011. Performance analysis of Kalman-

filter-based clock synchronization in IEEE 1588 networks. IEEE transactions on
instrumentation and measurement 60, 8 (2011), 2902–2909.

[21] Rachid Guerraoui, Sébastien Rouault, et al. 2018. The hidden vulnerability of dis-

tributed learning in byzantium. In International Conference on Machine Learning.
PMLR, 3521–3530.

[22] B Haberman, D Mills, and U Delaware. 2010. Network time protocol version 4:

Autokey specification. In RFC 5906.
[23] IBM. 2019. PTPD Daemon Version 7.2. https://www.ibm.com/docs/en/aix/7.1?

topic=p-ptpd-daemon

[24] Eyal Itkin and Avishai Wool. 2017. A security analysis and revised security

extension for the precision time protocol. IEEE Transactions on Dependable and
Secure Computing 17, 1 (2017), 22–34.

[25] M. Langer and R. Bermbach. 2022. NTS4PTP - Key Management System for the

Precision Time Protocol Based on the Network Time Security Protocol. https:

//www.ietf.org/id/draft-langer-ntp-nts-for-ptp-04.html

[26] Linux. 2011. An implementation of the Precision Time Protocol (PTP) according

to IEEE standard 1588 for Linux. https://linuxptp.sourceforge.net/

[27] Aanchal Malhotra, Isaac E Cohen, Erik Brakke, and Sharon Goldberg. 2015.

Attacking the network time protocol. Cryptology ePrint Archive (2015).
[28] Aanchal Malhotra, Matthew Van Gundy, Mayank Varia, Haydn Kennedy,

Jonathan Gardner, and Sharon Goldberg. 2017. The security of ntp’s datagram

protocol. In International Conference on Financial Cryptography and Data Security.
Springer, 405–423.

[29] Miklós Maróti, Branislav Kusy, Gyula Simon, and Akos Lédeczi. 2004. The

flooding time synchronization protocol. In Proceedings of the 2nd international
conference on Embedded networked sensor systems. 39–49.

[30] Bassam Moussa, Marthe Kassouf, Rachid Hadjidj, Mourad Debbabi, and Chadi

Assi. 2019. An extension to the precision time protocol (PTP) to enable the

detection of cyber attacks. IEEE Transactions on Industrial Informatics 16, 1 (2019),
18–27.

[31] Oleg Obleukhov and Ahmad Byagowi. 2022. How Precision Time Protocol is

being deployed at Meta. https://engineering.fb.com/2022/11/21/production-

engineering/precision-time-protocol-at-meta/

[32] Adrian Perrig, Ran Canetti, J Doug Tygar, and Dawn Song. 2002. The TESLA

broadcast authentication protocol. Rsa Cryptobytes 5, 2 (2002), 2–13.
[33] Relese:2.4.5.dev0. 2022. Scapy: Packet crafting for Python2 and Python3. https:

//scapy.readthedocs.io/en/latest/

[34] Relese:4.2. 2022. Chronyd: a versatile implementation of the Network Time

Protocol (NTP). https://chrony.tuxfamily.org/

[35] Ruxandra Lupas Scheiterer, Chongning Na, Dragan Obradovic, and Günter

Steindl. 2009. Synchronization performance of the precision time protocol in

industrial automation networks. IEEE Transactions on Instrumentation and Mea-
surement 58, 6 (2009), 1849–1857.

[36] Dieter Sibold, Stephen Roettger, and Kristof Teichel. 2016. Network time security.

Work in Progress, draft-ietf-ntp-network-time-security-14 (2016).
[37] Turtlebot3 [n. d.]. Turtlebot3. https://emanual.robotis.com/docs/en/platform/

turtlebot3/overview/. Accessed: 2022-011-06.

[38] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. 2018. Phocas: dimensional

byzantine-resilient stochastic gradient descent. arXiv preprint arXiv:1805.09682
(2018).

[39] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.

Byzantine-robust distributed learning: Towards optimal statistical rates. In Inter-
national Conference on Machine Learning. PMLR, 5650–5659.

APPENDIX

Proof of lemma 2

Without generality, we suppose the honest measurements are

within ascending order: 𝑑1 ≤ 𝑑2 ≤, · · · , ≤ 𝑑𝑛−𝑓 . First, 𝑑𝑓 +1
∈ B,

considering thatE[𝐷 (𝑑𝑓 +1
)] = E{∑𝑓

𝑖=1
[

𝑑𝑓 +1

− 𝑑𝑖

2+

𝑑𝑖 − 𝑑
2𝑓 +2−𝑖

2]}
≤ E{∑𝑓

𝑖=1

𝑑
2𝑓 +2−𝑖 − 𝑑𝑖

2} ≤ 2𝑓 𝜎2

𝑚𝑎𝑥 (Triangular Inequality). Then

when 𝑓 > 1, check the expectation of the summation of 𝐷 (𝑑𝑖) +
𝐷 (𝑑

2𝑓 +2−𝑖), 𝑖 ∈ (1, 2 · · · , 𝑓).
E[𝐷 (𝑑𝑖) + 𝐷 (𝑑

2𝑓 +2−𝑖)] = E{
𝑖∑︁
𝑗=1

[

𝑑𝑖 − 𝑑 𝑗

2 +

𝑑𝑖 − 𝑑

2𝑓 +2− 𝑗

2]}

+E{
𝑖∑︁
𝑗=1

[

𝑑

2𝑓 +2−𝑖 − 𝑑 𝑗

2 +

𝑑
2𝑓 +2−𝑖 − 𝑑

2𝑓 +2− 𝑗

2]}

+E{
2𝑓 +1−𝑖∑︁
𝑗=𝑖+1

𝑑𝑖 − 𝑑 𝑗

2 +

𝑑
2𝑓 +2−𝑖 − 𝑑 𝑗

2} + 2E

𝑑𝑖 − 𝑑

2𝑓 +2−𝑖

2

≤ 2 ∗ E{
𝑖∑︁
𝑗=1

𝑑
2𝑓 +2− 𝑗 − 𝑑 𝑗

2 + E{
2𝑓 +1−𝑖∑︁
𝑗=𝑖+1

𝑑
2𝑓 +2−𝑖 − 𝑑𝑖

2}

+2 ∗ 2𝜎2

𝑚𝑎𝑥 = (2𝑖 + 2𝑓 − 2𝑖 + 2)2𝜎2

𝑚𝑎𝑥 = (2𝑓 + 2)2𝜎2

𝑚𝑎𝑥

Therefore, the expectation of the summation of 𝐷 (𝑑𝑖) +𝐷 (𝑑
2𝑓 +2−𝑖)

is smaller than (2𝑓 + 2)2𝜎2

𝑚𝑎𝑥 , and either E[𝐷 (𝑑𝑖)] ≤ (2𝑓 + 2)𝜎2

𝑚𝑎𝑥

or E[𝐷 (𝑑
2𝑓 +2−𝑖)] ≤ (2𝑓 + 2)𝜎2

𝑚𝑎𝑥 . Because there are 𝑓 pairs of 𝑑𝑖
and 𝑑

2𝑓 +2−𝑖 , 𝑖 ∈ (1, 2 · · · , 𝑓), there exists 𝑓 other honest measure-

ments 𝑑𝑘 ∈ B.

71

https://doi.org/10.1109/IEEESTD.2017.7953616
https://doi.org/10.1109/IEEESTD.2020.9120376
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9121845
https://aws.amazon.com/robomaker/
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://www.calnexsol.com/en/timing-and-sync-blog-article-display/1386-accurate-timing-in-financial-trading
https://www.calnexsol.com/en/timing-and-sync-blog-article-display/1386-accurate-timing-in-financial-trading
https://www.ibm.com/docs/en/aix/7.1?topic=p-ptpd-daemon
https://www.ibm.com/docs/en/aix/7.1?topic=p-ptpd-daemon
https://www.ietf.org/id/draft-langer-ntp-nts-for-ptp-04.html
https://www.ietf.org/id/draft-langer-ntp-nts-for-ptp-04.html
https://linuxptp.sourceforge.net/
https://engineering.fb.com/2022/11/21/production-engineering/precision-time-protocol-at-meta/
https://engineering.fb.com/2022/11/21/production-engineering/precision-time-protocol-at-meta/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://chrony.tuxfamily.org/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

	Abstract
	1 Introduction
	2 PTP: Overview and Vulnerabilities
	2.1 PTP Overview
	2.2 PTP Vulnerabilities

	3 Attack Demonstration: Compromising PTP Network Timing
	3.1 Experiment Setting
	3.2 Insider Time Shifting Attack
	3.3 Attack Results
	3.4 Case Study: Attack Consequence on a Real Robotic Platform.
	3.5 Attack Analysis and Discussion

	4 MS-PTP: A robust time estimation
	4.1 System Model
	4.2 MS-PTP-Byzantine Resilient Measurement Aggregation
	4.3 Theoretical Proofs
	4.4 Analysis

	5 Experiments and Implementations
	5.1 Byzantine Resilience
	5.2 Communication and Computation Overhead
	5.3 Compatibility

	6 Related Work
	6.1 Network Timing Attack and Defense
	6.2 BFT Data Aggregation

	7 Discussion
	8 Conclusion
	References

