
MedLeak: Multimodal Medical Data Leakage in Secure Federated
Learning with Crafted Models

Shanghao Shi
Virginia Tech

Arlington, VA, USA

Md Shahedul Haque
Virginia Tech

Arlington, VA, USA

Abhijeet Parida
Children’s National Hospital

Washington, D.C., USA

Chaoyu Zhang
Virginia Tech

Arlington, VA, USA

Marius George Linguraru
Children’s National Hospital,
George Washington University

Washington, D.C., USA

Y. Thomas Hou
Virginia Tech

Blacksburg, VA, USA

Syed Muhammad Anwar
Children’s National Hospital,
George Washington University

Washington, D.C., USA

Wenjing Lou
Virginia Tech

Arlington, VA, USA

Abstract
Federated learning (FL) allows participants to collaboratively

train machine learning models while keeping their data private,
making it ideal for collaborations among healthcare institutions
on sensitive datasets. However, in this paper, we demonstrate a
novel privacy attack called MedLeak, which allows a malicious
participant who initiates the FL task as the server to recover high-
quality site-specific private medical images and text records from
the model updates uploaded by clients. In MedLeak, a malicious
server introduces an adversarially crafted model during the FL
training process. Honest clients, unaware of the insidious changes
in the published model, continue to send back their updates as per
the standard FL training protocol. Leveraging a novel analytical
method, MedLeak can efficiently recover private client data from
the aggregated parameter updates. This recovery scheme is signifi-
cantly more efficient than the state-of-the-art solutions, as it avoids
the costly optimization process. Additionally, the scheme relies
solely on the aggregated updates, thus rendering secure aggrega-
tion protocols ineffective, as they depend on the randomization of
intermediate results for security while leaving the final aggregated
results unaltered.

We implement MedLeak on medical image datasets MedMNIST,
COVIDx CXR-4, and Kaggle Brain Tumor MRI datasets, as well as
the medical text dataset MedAbstract. The results demonstrate that
the proposed privacy attack is highly effective on both image and
text datasets, achieving high recovery rates and strong quantitative
scores. We also thoroughly evaluate MedLeak across different at-
tack parameters, providing insights into key factors that influence
attack performance and potential defenses. Furthermore, we per-
form downstream tasks, such as disease classification, using the
recovered data, showing no significant performance degradation
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compared to the original training samples. Our findings validate
the need for enhanced privacy measures in federated learning sys-
tems, particularly for safeguarding sensitive medical data against
powerful model inversion attacks.
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1 Introduction
Federated learning (FL) has developed as a key enabling technol-

ogy for the future implementation of AI-powered medical diagnosis
and treatment systems [1, 5, 8, 20, 21, 24, 28, 31]. FL allows med-
ical centers to collaboratively train machine-learning models for
various clinical tasks such as disease classification and clinical diag-
nosis, without sharing private patient information. This is crucial
because medical centers are bound to preserve patient privacy and
their data usage is strictly restricted in many clinical applications
in accordance with regulatory guidelines. Under the FL framework,
distributed training is set up in a way where hospitals that own
private clinical data usually serve as clients, and a server – either
hosted at one of the collaborating sites or maintained by a third
party, integrates the model updates received from each client to
orchestrate the federated learning paradigm. There are multiple
open source (such as NVFLARE [29] and OpenFL [27]) as well
as commercial platforms (such as Rhino FCP [33]), designed to

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721201.3721375
https://doi.org/10.1145/3721201.3721375


CHASE ’25, June 24–26, 2025, New York, NY, USA Shanghao Shi, et al.

streamline the implementation of FL. During the FL training pro-
cess, only the model updates, which refer to either the gradients or
parameter updates, are exchanged between the participant and the
server, while the private training samples are kept securely at the
clinical site. Therefore, when first introduced, federated learning
was considered to be privacy-preserving and the model updates
are regarded as safe vectors that hide training samples’ private
information [18, 25, 36, 37, 41].

Existing Privacy Attacks. Recent privacy attacks challenged
the privacy-preserving property associated with FL. It is demon-
strated that a curious or malicious parameter server can extract
information related to the training samples such as their labels,
membership information, and even the whole training sample us-
ing the model updates [9–11, 17, 19, 35, 40, 42, 44]. Of particular
interest, the model inversion attacks (MIAs) [9, 11, 23, 32, 40, 44]
are a type of privacy attack aiming to recover the original training
images. They take the individual model updates provided by the
clients as inputs and reverse them back to the local training samples.
This could be detrimental in medical applications, where such an
attack can reconstruct patient-specific data. Existing MIAs usually
formulate this reverse process as an optimization problem and have
been shown to achieve good recovery performance in recovering
high-fidelity training images from the model updates, when enough
optimization iterations are performed. This completely exposes the
information that the FL system has been designed to protect.

However, existing optimization-based MIAs are facing serious
scalability and efficiency challenges. In practice, they need the
server to consume extensive resources (usually hundreds of com-
putation seconds with large memory) to recover only a few images,
making them virtually impractical for real-world systems. Further,
such MIAs can also be prevented by a specialized multi-party com-
putation (MPC)mechanism named secure aggregation (SA) protocol
[4, 6, 26], whose fundamental idea is to use various cryptography
primitives (e.g., secret sharing) to mask individual model updates
with random values but keep their summation identical to the pre-
masked value. In this way, the FL system can proceed to the training
process without exposing individual model updates, preventing the
MIAs from reversing them back to local training samples.

Our Attack. In this paper, we propose a novel attack name
MedLeak that addresses the limitation of the existing works. Our
attack design makes it very practical, which could be detrimental
to privacy in existing FL systems. MedLeak is an efficient attack,
capable of recovering hundreds of training samples in a batch from
the victim client within just a few seconds. MedLeak can also break
the SA protocols as it can recover the training samples directly
from the summation value of the model updates even though the
individual ones are cryptographically masked. In addition, MedLeak
can be accomplished within one FL training round, making it very
practical and stealthy. To further evade detection, the attacker can
launch the attack in the initial FL training rounds to avoid hurting
the FL training performance. A greedy attacker can even launch the
attack multiple times during continuous training rounds to harvest
as many local training samples as possible.

Technically, MedLeak is a two-phase attack including the attack
preparation phase and the sample recovery phase. In the first phase,
the attacker adds an additional two-linear layer module in front

of the original model architecture and initializes the module with
customized parameters before sending it to the clients. For the
target victim, the attacker initializes the parameters of the two-
layer module to form a “linear leakage” module with the help of an
auxiliary dataset that has the same data format and distribution as
the training samples. This “linear leakage” module is a powerful
mathematical tool that can perfectly reverse its gradients back to
its inputs, which are identical to the training samples because we
place this module as the first component of the model architecture.
For other clients, their two-layer modules’ parameters are crafted
to form a “zero gradient” module, aiming to zero out their gradients
and model updates. By doing so the aggregated model update is
identical to the model update of the victim because all the others
are set to zero, rendering the SA protocols useless.

As medical data is usually composed of both image and text
records, we explore and extend MedLeak’s capability to recover
both data modalities. Particularly, the recovery of medical text
records is largely ignored in the existing literature and we are
proposing the first work in this direction to our knowledge. Com-
pared to medical images, the recovery of medical text records is
more challenging because they are discrete natural language words
with different paragraph lengths in the input space, resulting in
completely different FL model architectures and parameter calcula-
tion methodologies. To address this challenge, we slightly modify
and customize our attack to insert the malicious module after the
embedding layer rather than at the front of the whole model to
first launch the recovery word embedding vectors, and then further
reverse these word embedding vectors back to input tokens (words).

We evaluated MedLeak on MedMNIST [39], COVIDx CXR-4
[34], Kaggle Brain Tumor MRI [22] datasets for medical images,
and on the MedAbstract dataset [30] for medical text records. For
medical images, we evaluated our attack performance using the
recovery rate, structural similarity (SSIM) score, peak signal-to-
noise ratio (PSNR) score, and attack time. Our results show that
MedLeak achieves excellent performance on these datasets to re-
cover hundreds of images simultaneously with high recovery rates
and quantitative scores, with only a few seconds of execution time.
On visual inspection, the recovered images are virtually indistin-
guishable from the original images. We compared the performance
of MedLeak with three existing MIAs. Our results demonstrate that
MedLeak achieves better quantitative scores and is comparatively
much more efficient. We further fed the recovered images to down-
stream disease diagnosis tasks. Our results show that the recovered
images achieved a classification performance close to the original
images, validating the effectiveness of our attack. For medical text
records, we evaluated our attack performance using the recovery
rate, word error rate (WER), and attack time. The results show that
MedLeak can accurately recover tens of long clinical data para-
graphs (e.g., descriptions of patients’ health conditions) spanning
up to hundreds of words simultaneously. This highlights MedLeak’s
strong capability to recover non-image modality records effectively
and efficiently.

In summary, in this paper we present the following contributions:

(1) We propose MedLeak, a novel and powerful MIA that is capa-
ble of recovering high-quality local training samples in large
batches using model updates from FL clients efficiently, even
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Table 1: A comparison between the existing MIAs and MedLeak with respect to their attack assumptions, efficiency, scales,
capabilities, and attack generalizability.

Attacks Attack Model Attack Efficiency Scale Break SA? Recover Text? Targeted?
[11, 16, 38, 40, 42, 44] Honest-but-curious Low (Optimization-based) 101 No No (Image-only) No

[23] Malicious server Low (Optimization-based) 101 Yes No (Image-only) Yes
[9, 43] Extra attack module High (Mostly closed-form) 102 to 103 Yes No (Image-only) No

MedLeak Extra attack module High (Closed-form) 102 to 103 Yes Yes Yes

when state-of-the-art cryptography-based defense mecha-
nisms such as secure aggregation are employed.

(2) Our attack represents a fundamental and practical privacy
vulnerability of the medical FL system as it compromises
individual clients’ privacy. MedLeak can target both medical
image and text data, demonstrating its broad applicability in
the medical domain.

(3) We provide rigorous mathematical analysis and proof for
our attack. Our proposed attack design is closed-form, hence
avoids incurring any computation-intensive optimization
and significantly reduces the computational costs when com-
pared to existing MIAs.

(4) We implement MedLeak on medical images and text datasets
under different practical assumptions in the FL systems. The
results show that our attack can nearly perfectly recover
different types of local training samples of the target victim.

2 Background
2.1 Federated Learning

We consider for each training round 𝑡 , there are 𝑛 clients denoted
by C = {𝑐1, 𝑐2, · · · , 𝑐𝑛} to be selected by the parameter server 𝑆 to
collaboratively train a global model 𝐺 = 𝑓𝜃 : X → Y, with each
client 𝑐𝑖 holds a local dataset 𝐷𝑖 . In detail, the parameter server 𝑆
first publishes the global model parameters 𝜃𝑡 to the clients. Then
each client trains the received global model 𝐺𝑡 for 𝐿𝑡𝑖 local rounds
over 𝐷𝑖 to generate its model update 𝛿𝑡

𝑖
. Note that when 𝐿𝑡

𝑖
= 1,

the model update 𝛿𝑡
𝑖
can be replaced by the gradient 𝑔𝑡

𝑖
. After that,

the client 𝑐𝑖 sends the model update 𝛿𝑡
𝑖
back to the server 𝑆 and

the server employs model aggregation (such as using the federated
average (FedAVG) algorithm [18]) to conduct the training process:

𝜃𝑡+1 =
𝑛∑︁
𝑖=1

𝛼𝑖𝛿
𝑡
𝑖 , (1)

where 𝛼𝑖 is the weight assigned to client 𝑐𝑖 . The summation of
all weights {𝛼𝑖 }𝑖:𝑐𝑖 ∈C is 1 and can be adjusted according to the
size of local datasets 𝐷𝑡

𝑖
to avoid training bias. The server may

also employ alternative aggregation strategies (such as FedSGD
algorithm [18]) for model aggregation. In the following text, we
will omit the notation 𝑡 , because our attack and analysis are all
conducted in a single FL training round.

Federated learning has been widely used in the healthcare do-
main, enabling different healthcare providers to collaborate with
each other towards accomplishing the training of machine learning
models for both natural language processing and imaging tasks
[14, 15, 25]. Such clinical FL systems usually leverage the patients’
private information as the local training datasets. These can be the

patients’ radiology scans, textual reports, and tabular records de-
scribing the patients’ visits and health conditions. This information
is considered to be highly private and sensitive and is protected
by strict governance laws such as HIPPA and GDPR. The medical
FL system is deployed to protect such privacy by ensuring that
the sensitive data never leaves the firewalls within the healthcare
sites during the model training process. However, herein we will
demonstrate with MedLeak that the privacy-preserving property
of current FL systems is under challenge.

2.2 Model Inversion Attacks
The model inversion attacks (MIAs) take the individual model

updates 𝛿𝑖 as the inputs and aim to reconstruct them back to
the local datasets 𝐷𝑖 held by the clients. This reversion problem
has been formalized as an optimization problem, represented as
argmin

𝐷𝑖
[𝑑 (∇𝐷𝑖 − ∇𝐷𝑖 )], where 𝐷𝑖 refer to randomly initialized

dummy samples and 𝑑 () refers to a distance function such as the
second norm distance. To solve this optimization problem, [44]
utilizes the L-BFGS optimizer to reconstruct the dummy samples
iteratively step by step until reaching a good optimization point. It
is further improved by an analytical method that aims to recover
the ground-truth labels of dummy samples from the gradients [42],
which significantly eases the optimization task and helps accom-
plish better attack performance. Later works have improved the
optimization tools and focus on recovering larger batches of images
on more practical machine learning models such as the ResNet
[11, 16, 38, 40]. However, their recovery sizes are still restricted to
the scale of tens, representing a scalability challenge. Moreover,
all the aforementioned MIAs require costly iterative optimization
methods in their design, which introduce a very large overhead to
recover each batch of input images. Further, these existing methods
also cannot bypass the current SA protocols.

2.3 Secure Aggregation
To enhance the privacy of the federated learning systems, Bonawitz

et al. [4] proposed a new type of specializedMPCmechanism named
the secure aggregation (SA) protocols to fulfill an abstract function
of masking individual model updates 𝛿𝑖 to 𝑢𝑖 with random bits,
while keeping the summation of the masked values

∑𝑛
𝑖=1 𝑢𝑖 identi-

cal to those of the pre-masked values
∑𝑛
𝑖=1 𝛿𝑖 . Therefore, despite

variations of detailed cryptographic design, all SA protocols ensure
that the server cannot obtain the individual model updates 𝛿𝑖 to
launch any model inversion attacks, but can proceed with the FL
training process with the aggregated model update

∑𝑛
𝑖=1 𝑢𝑖 , which

is identical to
∑𝑛
𝑖=1 𝛿𝑖 . Since its initial introduction, the SA protocols

have been continuously refined to incorporate other properties in-
cluding communication efficiency, drop-out resilience [3, 7, 12, 13],
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and security against malicious clients [6, 26], making it the current
state-of-the-art privacy protection mechanism for FL systems.

Secure Aggregation under Challenge: Under the honest-but-
curious attack model, the SA protocols have proven to be secure
against various MIAs. However, recent works adopt a stronger
attack model to assume a proactive attacker that modifies the global
model’s parameters and even its architecture before publishing
it to the clients. Under this assumption, [23] proposed a novel
attack that retrieves a target individual model update from the
aggregated result, breaking the SA protocols. The fundamental idea
is to craft the model parameters to adversarial models and distribute
different adversarial models to different clients strategically. The
adversarial models are crafted to ensure that only the model update
of the victim client is preserved while all the others are zeroed
out. The limitation of this attack is that it incorporates a costly
optimization process in its design, which introduces too much
attack overheads. [9] proposed another attackmethod to add crafted
modules before the original model architecture. These additional
modules are crafted with delicate mathematical designs to ensure
that the model gradients can be perfectly reversed back to inputs
whenever the server receives any model updates. The limitation
of this attack is that the attacker cannot link the recovered images
to their owners, which means the SA protocols still preserve a
certain level of privacy, known as “privacy by shuffling”. Later,
[43] addressed this issue by designing a more complex adversarial
module composed of convolutional and linear layers before the
original model to identify the client associated with the recovered
images. However, using a computer vision-related architecture
prohibits the attack from being adopted to recover text records.

2.4 Attack Summary and Comparison
In Tab. 1, we summarize and compare the existing MIAs accord-

ing to their attack assumptions, efficiency, scales, capabilities, and
generability. In our design, we adopt the active attacker assumption
to break the SA protocol and simultaneously address various limi-
tations of the existing works. In particular, we aim to address the
following three problems: 1) attack efficiency-our attack shall not
employ any computation-intensive optimization process to incur
large overheads; 2) attack effectiveness- our attack’s capability of
recovering high-quality local training samples from the aggregated
model updates and attribute them back to individual clients even
when SA protocols are incorporated, and 3) attack generality- our
attack can be applied to traditional image recovery tasks as well as
text recovery task (currently less explored).

3 Threat Model
In Fig.1 we demonstrate the threat model of our attack. We con-

sider the parameter server 𝑆 to be a malicious party that is curious
about the training samples held by clients (e.g., private patient im-
ages or text records). We consider the parameter server to be a
proactive attacker and can actively modify model parameters and
architectures from 𝐺 to 𝐺 to achieve the attack goals, following
the same assumption as [9, 23, 32, 43]. We assume the communi-
cation channels between the server and clients are secured and
all messages can be authenticated. We assume the state-of-the-art
SA protocols are in place and the server can only get access to

Hospital 1 Hospital 2 Hospital 3 Hospital n

Local Data 1 Local Data 2 Local Data 3 Local Data n

𝐺𝐺𝑡𝑡 𝛿𝛿1𝑡𝑡 𝐺𝐺𝑡𝑡 𝛿𝛿2𝑡𝑡 𝐺𝐺𝑡𝑡 𝛿𝛿3𝑡𝑡 𝐺𝐺𝑡𝑡 𝛿𝛿4𝑡𝑡

Secure Aggregation

Auxiliary Data Parameter Server

Global Model

Update 𝐺𝐺𝑡𝑡 to 𝐺𝐺𝑡𝑡+1

Curious about 
clients’

information!

…

Figure 1: Threat Model. The server is considered to be a mali-
cious attacker. The secure aggregation protocol is considered
to be in place to protect the individual model updates.

the aggregated model updates
∑𝑛
𝑖=1 𝛿𝑖 without knowing anything

about the individual values 𝛿𝑖 . We consider the attacker is able
to collect or obtain an auxiliary dataset 𝐷𝑎𝑢𝑥 that has the same
data format and can represent the target dataset well. The attacker
can leverage various online resources such as publicly available
datasets, image searching tools, and image generative tools to fulfill
this requirement. For our use case, the availability of public chest
X-rays and medical text datasets makes this task trivial. The goal
of the attacker is to recover the local data samples of a target client
𝑐𝑡𝑎𝑟𝑔𝑒𝑡 just from the aggregated model updates

∑𝑛
𝑖=1 𝛿𝑖 . This can

be mathematically expressed as: 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑅𝑒𝑣𝑒𝑟𝑠𝑒 (∑𝑛
𝑖=1 𝛿𝑖 ,𝐺).

4 Attack Method
4.1 Attack Overview

As we assume the attacker only possesses the already-masked
aggregated model updates

∑𝑛
𝑖=1 𝛿𝑖 under the protection of the SA

protocol, it is very challenging to identify an end-to-end method
that directly reverses the aggregated results back to local train-
ing samples 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 . To address this, we decompose the complex
recovery problem into two different distinct tasks including the
individual model update retrieval and efficient model update reversion
tasks. The first task aims to retrieve the individual model update of
the victim from the aggregated model updates, thus breaking the
SA protocol. The second task aims to reverse the individual model
update back to local samples, achieving the recovery sub-problem.

To accomplish them, we require the attacker to place an addi-
tional two-linear-layer module 𝐿𝑎𝑑𝑣 with the rectified linear unit
(ReLU) activation function in between at the beginning of the origi-
nal global model, i.e.𝐺 = 𝐺 ⊕𝐿𝑎𝑑𝑣 . The dimension of this module is
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Global Model 𝐺𝐺

Auxiliary 
Dataset 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴

Craft①

…

�𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 for the target

Linear Leakage

�𝐺𝐺𝑜𝑜𝑡𝑡𝑜𝑡𝑡𝑡𝑡𝑜𝑜 for the others

Zero Gradient

Statistics
�𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

�𝐺𝐺𝑜𝑜𝑡𝑡𝑜𝑡𝑡𝑡𝑡𝑜𝑜

②

Aggregated model 
updates ∑i=1𝑛𝑛 δ𝑖𝑖

δ1

δn

③

Parameter Server

Attack Preparation Phase

Client 2 𝐷𝐷2

Reverse Module

Radiology 
Samples in 𝐷𝐷1

Input Reconstruction Phase
Client n 𝐷𝐷𝑛𝑛

Radiology 

Clinical

Laboratory

Pathology

Camera

Image 
Data

Non-Image 
Data

𝐷𝐷1

Client 1 

δ2

Secure 
Aggregation

Figure 2: MedLeak attack flow. MedLeak is a two-phase attack. In the first preparation phase, the attacker generates the
adversarial global model. In the second reconstruction phase, the attacker sends the adversarial models to the clients and
recovers the local samples when it receives their feedback. MedLeak can reconstruct both image and non-image data and this
figure demonstrates the reconstruction of the medical radiology images.

identical to the image dimension. We require the attacker to initial-
ize the parameters of the linear module 𝐿𝑎𝑑𝑣 to form different adver-
sarial modules and distribute them to different clients accordingly.
For all the other clients except the victim, the attacker crafts the
“zero gradient”modules𝐿𝑧𝑒𝑟𝑜 to ensure that the gradients andmodel
updates of these clients are always zero, i.e.𝐺𝑜𝑡ℎ𝑒𝑟𝑠 = 𝐺 ⊕𝐿𝑧𝑒𝑟𝑜 . By
doing this, the attacker guarantees that only the model update of
the victim client is exposed, accomplishing task one. For the victim
client, the attacker crafts a “linear leakage” module 𝐿𝑙𝑖𝑛𝑒𝑎𝑟 , aiming
to reverse its model update back to local training samples efficiently,
i.e.𝐺𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐺 ⊕𝐿𝑙𝑖𝑛𝑒𝑎𝑟 . This module requires an auxiliary dataset
to help generate essential parameters and can ensure that samples
are perfectly recovered with a mathematical proof, accomplishing
task two. Detailed attack flow and module designs are introduced
in the next section.

4.2 Detailed Attack Flow
We demonstrate the attack flow in Fig.2. MedLeak is a two-phase

attack including 1) attack preparation and 2) sample reconstruc-
tion phases. In the attack preparation phase, the attacker crafts the
adversarial global model 𝐺 and initializes it with different model
parameters including 𝐿𝑧𝑒𝑟𝑜 and 𝐿𝑙𝑖𝑛𝑒𝑎𝑟 (step 1○) before publishing
them to different clients (step 2○). Then in the second phase, the
attacker collects the aggregated model updates and uses an ana-
lytical method to reverse it back to local training samples (step
3○). MedLeak can be used to reconstruct both medical image and
non-image data. In the following parts, we will first introduce the
overall attack flow and detailed design components via the image
data reconstruction task, and then introduce how MedLeak can be
customized to accomplish the text reconstruction task.

Attack Preparation: In this phase, the attacker crafts both the
“linear leakage” module and “zero gradient” module once at the
outset. Both modules require the estimation of essential param-
eters of a representative auxiliary dataset 𝐷𝑎𝑢𝑥 . In detail, the at-
tacker first estimates the cumulative density function (CDF) of the
brightness feature ℎ(𝑥) of the auxiliary dataset 𝐷𝑎𝑢𝑥 , denoted by
𝜓 (ℎ(𝑥)), to represent the CDF of the local training dataset (which
is unavailable), where 𝑥 refers to the input vector. After that, the
attacker divides the distribution𝜓 into equally 𝑘 bins by calculating
ℎ 𝑗 = 𝜓−1 ( 𝑗/𝑘) where 𝑗 ∈ {1, 2, · · · , 𝑘}, 𝜓−1 refers to the inverse
function of𝜓 , and 𝑘 equals to the neuron number of the first linear
layer. By doing so, the brightness of a random input vector 𝑥 de-
noted by ℎ(𝑥) will have the same probability of falling into each
bin. This bin vector H = [ℎ1, ℎ2, · · · , ℎ𝑘 ] is the key vector to form
both attack modules.

Linear Leakage Module: Assuming the weight and bias matrix
of the two-layer module 𝐿𝑎𝑑𝑣 are𝑤1, 𝑏1 and𝑤2, 𝑏2 respectively. For
the target victim, the attacker initializes the “linear leakage” module
𝐿𝑙𝑖𝑛𝑒𝑎𝑟 with the following steps: (1) having 𝑤1’s row vectors all
identical to

[ 1
𝑑
, 1
𝑑
, · · · , 1

𝑑

]
, where 𝑑 refers to the dimension of the

input images, resulting in calculating the brightness feature on
each neuron when the local training images are sent into the model
during the FL training process; (2) having the bias 𝑏1 identical the
opposite value of H, i.e.,𝑏1 = −H; (3) having all row vectors of𝑤2
the same.

Zero Gradient Module: The “zero gradient” module is ini-
tialized in the same way as the “linear leakage” module except
in step (2), in which the attacker has the bias vector 𝑏1 equal to
H′ = − [ℎ𝑘 , ℎ𝑘 , · · · , ℎ𝑘 ]. By doing so, the output of the first linear
layer will always be smaller than zero because ℎ𝑘 is the largest
possible brightness and all possible input 𝑥 ’s brightness is smaller
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Figure 3: An example of how the medical text classification
system works and where to insert the malicious modules.

than it. Considering we use the ReLU activation function after
the first layer, the input to the second layer and the gradients of
the first layer shall always be zero because of the ReLU function’s
mathematical property. This results in zero model updates for all
clients except the target victim. Therefore, the aggregated model
updates are identical to the model update of the victim client, i.e.∑𝑛
𝑖=1 𝛿𝑖 = 0 + 0 + · · · + 0 + 𝛿𝑡𝑎𝑟𝑔𝑒𝑡 = 𝛿𝑡𝑎𝑟𝑔𝑒𝑡 , exposing the model

update of the target victim.

Sample Reconstruction: The sample reconstruction phase can
be treated as the actual attack phase, in which the parameter server
disseminates the crafted global models𝐺 to all clients and recovers
the local samples of the target victim 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 according to the
aggregated model updates

∑𝑛
𝑖=1 𝛿𝑖 provided by all clients.

More specifically, with the help of the “zero gradient” module, the
aggregated model update

∑𝑛
𝑖=1 𝛿𝑖 the attacker obtains is identical

to the model update of the victim client 𝛿𝑡𝑎𝑟𝑔𝑒𝑡 , even though the
SA protocols are in place. We further argue that the attacker can
accurately estimate the gradients from the model update 𝛿𝑡𝑎𝑟𝑔𝑒𝑡
as it equals local iterations of the gradients [18, 32]. We define
the gradients of the first two layers of the target victim as 𝑔𝑤1 , 𝑔𝑏1
and 𝑔𝑤2 , 𝑔𝑏2 respectively. The attacker can calculate the following
equation to reconstruct the input samples, for 𝑙 ∈ {1, 2, · · · , 𝑘}:

(𝑔 (𝑙+1)𝑤1 − 𝑔
(𝑙 )
𝑤1 )/(𝑔

(𝑙+1)
𝑏1

− 𝑔
(𝑙 )
𝑏1

), (2)

where specially we have 𝑔 (𝑘+1)𝑤1 and 𝑔 (𝑘+1)
𝑏1

equal zero.
Analysis: Equ. 2 creates 𝑘 recovery bins to recover input im-

ages. Fortunately, when 𝑘 ≥ 𝑚, where𝑚 refers to the size of the
target dataset, each local training sample in the dataset will be
perfectly recovered within a certain bin ranging from 1 to 𝑘 . Here
perfect recovery means that the inputs are analytically calculated
through closed-form mathematical equations. A rigorous math-
ematical proof for this property is provided in the next section.
However, when 𝑘 < 𝑚, there will be recovery conflicts, and some
recovered samples are mixed with each other in certain bins, result-
ing in degraded recovery rates and quality. We argue this does not
mean the total failure of the image reconstruction task. We will later
demonstrate that in this scenario the attack performance gradually
decreases and the attack remains to achieve decent performance
when attack parameter 𝑘 is about the same scale as𝑚.

We regard the attack parameter 𝑘 as the key factor that affects
reconstruction performance. Fortunately, from the attacker’s per-
spective, this parameter is controlled and adjustable. The attacker
can have a larger 𝑘 (i.e. craft larger linear layers) for large datasets
and a smaller one for small datasets according to different attack sce-
narios to ensure that there are enough recovery bins for all samples.

Regarding attack complexity, both the attack preparation and sam-
ple reconstruction phases only involve closed-form mathematical
calculations that are super efficient to be conducted.

4.3 Proof of Correctness
Without the loss of generality, we use 𝑥𝑝 to denote the local input

sample. Considering the input 𝑥𝑝 falls in the 𝑝𝑡ℎ largest bin, i.e. the
brightness of 𝑥𝑝 denoted by ℎ(𝑥𝑝 ) satisfies ℎ𝑝 < ℎ(𝑥𝑝 ) < ℎ𝑝+1. We
have the following equation holds:

𝑔
(𝑝+1)
𝑤1 − 𝑔

(𝑝 )
𝑤1

𝑔
(𝑝+1)
𝑏1

− 𝑔
(𝑝 )
𝑏1

=
∇𝑤1 (𝑝+1)𝐿 − ∇𝑤1 (𝑝 )𝐿

∇𝑏1 (𝑝+1)𝐿 − ∇𝑏1 (𝑝 )𝐿

=

𝜕𝐿
𝜕𝑦𝑝+1

𝜕𝑦 (𝑝+1)
𝜕𝑤1(𝑝+1)

− 𝜕𝐿
𝜕𝑦𝑝

𝜕𝑦 (𝑝 )
𝜕𝑤1(𝑝 )

𝜕𝐿
𝜕𝑦𝑝+1

𝜕𝑦 (𝑝+1)
𝜕𝑏1(𝑝+1)

− 𝜕𝐿
𝜕𝑦𝑝

𝜕𝑦 (𝑝 )
𝜕𝑏1(𝑝 )

=

𝑝∑
𝑣=1

𝜕𝐿
𝜕𝑦𝑝+1

𝑥𝑣 −
𝑝−1∑
𝑣=1

𝜕𝐿
𝜕𝑦𝑝

𝑥𝑣

𝑝∑
𝑣=1

𝜕𝐿
𝜕𝑦𝑝+1

−
𝑝−1∑
𝑣=1

𝜕𝐿
𝜕𝑦𝑝

=

𝜕𝐿
𝜕𝑦𝑝

𝑥𝑝

𝜕𝐿
𝜕𝑦𝑝

= 𝑥𝑝

(3)

where 𝐿 is the loss function, 𝑦 is the output of the first linear layer,
and 𝜕𝐿

𝜕𝑦𝑝+1
= 𝜕𝐿

𝜕𝑦𝑝
because we let the row vectors of the𝑤2 matrix

identical.
This equation implies 𝑥𝑝 is perfectly recovered from the gradi-

ents of the first linear layer. BecauseH covers the whole distribution
range of the brightness feature, each input image will fall into one
bin and thus can be recovered in this way as long as the image
number is smaller than 𝑘 .

4.4 Text Data Reconstruction
The medical text records are usually natural language words

with discrete values within the input space. They have different
mathematical properties from the medical images which are contin-
uous pixel values in the input space. As a result, the medical natural
language processing (NLP) models usually have different model
architectures and workflows compared to their vision counterparts.
In Fig. 3, we demonstrate the architecture of a text classification
model. More specifically, for an input sentence 𝑥 , the model first
converts it to a sequence of tokens (𝑡1, 𝑡2, · · · , 𝑡𝑙 ), where 𝑙 refers
to the maximum length of the sentence. Then the tokens are fed
into the embedding model to be converted into the word embed-
ding vectors, represented by 𝑧 = [𝑒1, 𝑒2, · · · , 𝑒𝑙 ]𝑇 , where all word
embedding vectors 𝑒𝑖 have the same pre-defined embedding di-
mension. After that, the word embedding vectors are fed into the
classification model to produce the output 𝑜 .

Within this model architecture, our original attack strategy of
placing the attack module in the front is not effective because the
words are all discrete values and cannot be recovered in the same
way as the continuous pixel values. Instead, we insert our attack
module 𝐿𝑎𝑑𝑣 including both the "linear leakage" module 𝐿𝑙𝑖𝑛𝑒𝑎𝑟
for the target victim and the "zero gradient" module 𝐿𝑧𝑒𝑟𝑜 for the
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catheters were inserted…
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Figure 4: Recovered examples from the COVIDx CXR-4 dataset, Kaggle Brain Tumor MRI dataset, and MedAbstract dataset. The
original images are on the left and the recovered ones are on the right. The text samples are truncated due to space limitations.
Recovery failure samples are marked in red rectangles.

others between the embedding layer and the classification model.
In this way, according to our previous analysis, the attacker can
successfully recover the embedding vectors 𝑧 = [𝑒1, 𝑒2, · · · , 𝑒𝑙 ]𝑇
with the help of these attack modules. The next question is can
the attacker further reverse the embedding vectors i.e. 𝑒𝑖 back to
the tokens 𝑡𝑖? Fortunately, the answer is yes. This is because the
word embedding layer maps the discrete tokens into continuous
embedding vectors in the embedding space similar to a “lookup
table”; therefore, the attacker can simply select the word within the
whole word vocabulary that minimizes the distance between the

actual embedding vector and the calculated one to be the original
token. In practice, we use a single Softmax layer to achieve this
reverse function.

Analysis: Similar to the image recovery task, the performance of
the text recovery task is largely affected by the number of recovery
bins 𝑘 . We assume during the FL training process, 𝑚 text data
samples are organized in a batch with each one having a maximum
length of 𝑙 words. We clarify that the maximum sentence length
𝑙 does not affect the recovery performance as long as it is not
super large (e.g. 104), which we will later justify in the experiment
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Table 2: The reconstruction performance of MedLeak over different datasets and reconstruction batch sizes. The rate (sample
recovery rate) is on a scale of 1.00

Batch Size Dataset Pixel Size Rate PSNR SSIM Time (in sec)

100
ChestMNIST(pneumonia) 28x28 1.0 112.574 0.99 0.742

COVIDx CXR-4 224x224 0.951 120.795 0.99 6.022
Kaggle Brain Tumor MRI 224x224 0.962 107.783 0.99 6.308

200
ChestMNIST(pneumonia) 28x28 0.960 102.722 0.99 0.936

COVIDx CXR-4 224x224 0.891 114.982 0.99 7.003
Kaggle Brain Tumor MRI 224x224 0.870 98.6421 0.99 6.738

300
ChestMNIST(pneumonia) 28x28 0.957 97.405 0.99 0.95

COVIDx CXR-4 224x224 0.880 105.123 0.99 8.121
Kaggle Brain Tumor MRI 224x224 0.845 96.722 0.99 7.181

400
ChestMNIST(pneumonia) 28x28 0.955 93.713 0.99 1.020

COVIDx CXR-4 224x224 0.864 97.301 0.99 8.762
Kaggle Brain Tumor MRI 224x224 0.804 93.179 0.99 8.042

500
ChestMNIST(pneumonia) 28x28 0.964 87.019 0.99 1.016

COVIDx CXR-4 224x224 0.810 95.864 0.99 9.763
Kaggle Brain Tumor MRI 224x224 0.796 92.954 0.99 8.767

section. The recovery performance is still largely determined by
the relationship between𝑚 and 𝑘 . When 𝑘 ≥ 𝑚, each embedding
vector is perfectly recovered within one bin, which further leads to
excellent text recovery performance. But when 𝑘 < 𝑚, there will
be recovery collisions within certain bins, and the text recovery
performance drops.

5 Evaluation
5.1 Experimental Settings

We implemented MedLeak on the PyTorch platform. We ran all
the experiments on a server equipped with an Intel Core i7-12700K
CPU 3.60GHzX12, one NVIDIA GeForce RTX 3080 Ti GPU, and
Ubuntu 20.04.6 LTS.

We considered the FL system to have 5 clients with one of them
being the attack target per training round. We assumed each client
would perform 5 local iterations before generating the individual
model updates. We randomly selected 10% of the training set as
the auxiliary dataset and aimed to recover samples in the test set,
which have no intersection with the auxiliary dataset. We assumed
the test set is partitioned and owned by the 5 clients locally to serve
as the local datasets. For the defense mechanism, we considered
the system to be protected by the SA protocol in [4]. Therefore,
we cannot get access to the individual model updates (which have
been cryptographically masked) and we launched our attack solely
based on the aggregated model updates. Note that our attack can
not only break the SA protocol in [4] because MedLeak breaks the
abstract aggregation function of the SA protocols regardless of their
implementation details. All SA mechanisms realizing the function
can be broken, including [3, 6, 7, 12, 13, 26].

For the image recovery task, we chose the ChestMNIST dataset
from the MedMNIST package [39], the COVIDx CXR-4 dataset [34],
and the Kaggle Brian Tumor MRI dataset [22] as our experiment
datasets. The ChestMNIST dataset comprises frontal view X-ray
images (1×28×28) of 30805 unique patients with 14 disease labels
and we selected data samples related to pneumonia to conduct our
experiments, including 78468 training samples and 22433 testing

samples. The COVIDx CXR-4 dataset also consists of frontal-view
chest X-ray images with higher dimensions (resized to 1×224×224)
and labels about whether the patient is COVID-positive. The train-
ing set contains 67863 images and the testing set contains 8482
images. The Kaggle Brain Tumor MRI Dataset contains 7023 im-
ages of human brain MRI images which are classified into 4 classes:
glioma - meningioma - no tumor and pituitary. Its training set
contains 5712 images and the testing set contains 1311 images.

We used four evaluation metrics including the recovery rate,
the attack time, the peak signal-to-noise ratio (PSNR) score, and
the structural similarity index measure (SSIM) score, following
the convention of the existing works [9, 11, 40, 42, 44] to evaluate
our attack over the image recovery task. More specifically, the
successful recovery of samples was measured by observing the
PSNR and SSIM scores between the original input samples and the
reconstructed ones and checking whether those scores exceed a
certain threshold 𝑡ℎ. In our work, we chose 𝑡ℎ = 20 for PSNR and
𝑡ℎ = 0.9 for SSIM because these thresholds are enough to ensure
that the recovered images are visually clear for the attacker to
extract all meaningful content from them.

For the text recovery task, we chose the MedAbstract dataset
[30] as our experiment dataset. The MedAbstract data set consists
of 14438 medical abstracts describing the patients’ health conditions
with each one consisting of a few hundred words. The patients’
conditions are classified into 5 different classes including diges-
tive system diseases, cardiovascular diseases, neoplasms, nervous
system diseases, and general pathological conditions.

We used three evaluation metrics including the recovery rate, the
word error rate (WER), and the attack time to evaluate MedLeak’s
performance over the text recovery task. Similar to the vision task,
the recovery rate was defined as the ratio between the number of
successfully recovered text samples achieving WERs lower than
threshold 0.05 and the total sample number. Meanwhile, the WER
was calculated as the portion of recovery failure words in text sam-
ples. In our experiment, we focused on the WER of the successfully
recovered samples to evaluate their recovery quality.
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Figure 5: The attack performance comparison between MedLeak with other model inversion attacks.

Table 3: Downstream binary classification task on the COVID dataset with a pre-trained (with CXR-3 dataset) ViT model. TPR:
True Positive Rate, TNR: True Negative Rate, ACC: Accuracy, AUC: Area Under Receiver Operating Characteristic curve, AUPR:
Area Under Precision Recall curve.

Model Image AUPR TNR TPR ACC AUROC

ViT-S (SSL) Original 0.937 0.800 0.857 0.829 0.905
Recovered 0.921 0.900 0.710 0.805 0.919

ViT-S (Fine-tuned) Original 0.974 0.970 0.930 0.950 0.969
Recovered 0.965 0.886 0.938 0.912 0.966

5.2 Image Reconstruction Results
In Tab. 2, we demonstrate the performance of MedLeak over

different recovery batch sizes (i.e. the number of samples recovered
simultaneously held by the target victim) ranging from 100 to 500
images. We can observe that both the recovery rate (i.e. the ratio
of successfully recovered images) and the quantitative scores (i.e.
the PSNR and SSIM scores) decrease when the recovered batch size
increases. This is expected because the larger the recovery batch
size, the more difficult the recovery task to conduct. But in general,
MedLeak achieves high recovery rates (> 0.8) and quantitative
scores (PSNR> 80 and SSIM> 0.9) for all three datasets under all
recovery batch sizes. Particularly, the SSIM scores (ranging from
0 to 1) remain to be 0.99 for all settings, because of the recovery
excellency. This can be further verified by the recovered samples
we visualized in Fig. 4, in which we plot the original images on the
left and the recovered ones on the right. We find that the recovered
images are of high quality and cannot be visually distinguished from
the original ones, even for some detailed small marks and notations.
In Tab. 2 we also demonstrate the attack time (in seconds). We find
that the attack time is monotonically increasing with respect to the
recovery batch size. For the largest batch size (i.e. 500 images) over
the complex COVIDx CXR-4 dataset, it only takes the attacker less
than 10 seconds to fulfill the recovery task, indicating that MedLeak
is very effective.

5.3 Benchmark Comparison
We compared MedLeak’s attack performance with three opti-

mization-based model inversion attacks (MIAs) including the DL-
G/iDLG [42, 44], InvertGradient [11], and GradInversion [40] at-
tacks (denoted as DLG, Invert, and GradInvert respectively) over

the MedMNIST dataset for one small batch of input images. We only
focused on the image recovery task because all the existing attacks
cannot be adapted to the text recovery task. We compared the PSNR
scores, SSIM scores, and the attack time between the three attacks
and our work. The results are demonstrated in Fig. 5. We can find
that our attack achieves much better PSNR scores and SSIM scores
than the existing MIAs, indicating that our attack can reconstruct
samples with better quality. At the same time, our attack consumes
significantly less time than the current MIAs. Particularly, the ex-
isting attacks consume a few hundred seconds to reconstruct one
batch of samples, while our attack only requires less than one sec-
ond, which reduces the current cost by two orders of magnitude.
The reason why our attack is much more efficient is that our at-
tack only involves closed-form mathematical calculations while
the other three attacks require costly iterative-based optimization
methods. However, there is no free lunch and we clarify that the
three benchmark works adopt an honest-but-curious attack model,
which does not allow the attacker to modify the model parameters
and architecture as we did.

5.4 Vision Downstream Tasks
To further evaluate the performance of our attack on clinically

relevant downstream tasks, we performed a binary disease classi-
fication (the detection of COVID-19) task on both the recovered
samples and the actual samples. We used the state-of-the-art vi-
sion transformer model (ViT-S) (embedding size=368, number of
heads=6, 22M parameters) pre-trained by self-supervised learning
(SSL) technique on 30k COVIDx CXR-3 samples and fine-tuned
on the RSNA-RICORD part of the dataset to perform the classi-
fication task [2] and evaluated it on the COVIDx CXR-4 dataset.
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Table 4: The text reconstruction performance of MedLeak over a different number of text samples and experiment settings.
The rate (sample recovery rate) is on a scale of 1.00. The “Embed Dim” refers to the embedding dimension.

Text Num Max Length Embed Dim Rate WER Time (in sec)

20 200 words 64 0.9375 0.0004 0.2149
300 words 64 0.9669 0.0009 0.3057

40 200 words 64 0.9212 0.0004 0.416
300 words 64 0.9153 0.0018 0.6023

60 200 words 64 0.8729 0.0005 0.6341
300 words 64 0.9083 0.002 0.9192

80 200 words 64 0.8228 0.0023 0.8331
300 words 64 0.8540 0.0051 1.2308

100 200 words 64 0.755 0.0047 1.058
300 words 64 0.7585 0.0052 1.514
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Figure 6: The recover performance of MedLeak over different practical attack factors.

We demonstrate the performance in Tab. 3. We use widely used
machine learning metrics to evaluate the classification performance
and we find that the recovered images achieve nearly the same per-
formance as the original ones. This shows that our reconstruction
process is highly successful in keeping all semantic meaning within
the images and the reconstructed images can be used to perform
any potential clinical analysis, which further indicates the severity
of the privacy threat imposed by our attack. We consider it a very
practical attack scenario for a curious party, which either can be
the medical federated learning’s participants or a third-party ser-
vice provider (who provides the necessary platform, computation
resource, and other FL infrastructures) to launch our attack to first
reconstruct the sensitive medical images and then feed them to
certain downstream analysis tasks to obtain further information
about of the victims.

5.5 Text Reconstruction Results
In Tab. 4, we demonstrate MedLeak’s performance on recovering

medical text data under different batch sizes (ranging from 20 to
100) and data settings. More specifically, “text num" refers to the
number of text samples recovered simultaneously in one batch, and
“max length” refers to the maximum length of the text contents
in the number of words. In our experiment, we fixed the length
of each text sample for processing convenience. We truncated the
samples when their lengths were longer than the maximum length
and padded them when they were shorter. We also fixed the embed-
ding dimension as the commonly used value 64. From the result,

we can find that in general, MedLeak achieves decent text recov-
ery performance under different settings to obtain high recovery
rates (> 0.75), low WER scores (< 0.006), and short execution time
within a few seconds. We observe that when the recovery batch size
increases, the recovery rate decreases accordingly, meaning that
recovering a larger batch of samples is more difficult. By comparing
MedLeak’s performance under different sample lengths (i.e. 200 v.s.
300 words), we further observe that a larger sample length triggers
longer attack time, which approximately follows a linear relation-
ship with the sample length. However, a larger sample length does
not trigger any recovery performance drop. We still observe decent
and stable recovery rates and WER scores when the sample length
increases. In fact, the recovery rate even increases when the sample
length is larger. This may be because longer samples maintain more
semantic information and can be better separated and recovered.

5.6 Performance Affecting Factors
In this section, we investigate MedLeak’s performance under

different FL settings. We implemented the attack on the COVID
CXR-4 dataset and evaluated the recovery rates and PSNR scores
considering the following 4 factors: recovery bin number, client
number, local training epoch, and non-iid data settings.

Recovery Bin Number: As we have discussed in Section 4. The
recovery bin size 𝑘 (i.e. neuron number of the first linear layer) can
significantly affect the performance of MedLeak. In the experiment,
we fixed the reconstruction batch size to 100 and changed the re-
covery bin 𝑘 size from 50 to 250. We demonstrate the results in
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Fig. 6(a). We find that both the recovery rates and PSNR scores are
monotonically increasing with 𝑘 and obtain relatively high quanti-
tative scores when 𝑘 ≥ 𝑚. This is consistent with our theoretical
analysis as more bins (larger 𝑘) will decrease the recovery conflict
probability and increase the recovery success rates. In practice, the
attacker can adjust the bin size according to local sample size to
obtain decent attack performance.

Client Number:We increased the client number from 5 to 25 in
our experiment. The results are shown in Fig. 6(b). We find that the
attack performance is not affected by the FL client number. This
indicates that our dis-aggregation attack phase is highly successful
and the attacker can always obtain accurate model updates of the
single victim client.

Local Training Epoch: We increased the local training epochs
of the FL clients from 1 to 9. The results are demonstrated in Fig.
6(c). From the results we only observe very slight performance
degradation when the FL clients conduct more local training epochs,
demonstrating that our attack can be applied to both FedSGD and
FedAVG settings.

Non-iid Data Distribution:We changed the class of samples
held by the victim clients in our experiment including having
COVID-only, non-COVID-only, and both type of samples. The re-
sults are shown in Fig. 6(d). We observe that the attack performance
is not affected by the type of samples held by the victim client, indi-
cating that MedLeak are applicable to both iid and non-iid settings.

6 Discussion and Future Work
Auxiliary Dataset: Using an auxiliary dataset is a commonly

used prerequisite for state-of-the-art MIAs [9, 23, 32, 43]. Our attack
takes the same assumption and its performance is also affected by
the number and quality of samples in the auxiliary data𝐷𝑎𝑢𝑥 . In the
ideal case, the auxiliary dataset shall have the same data distribution
as the target victim’s local dataset, or the auxiliary dataset is more
representative. It may be a challenge for the general vision tasks
to find such a representative auxiliary dataset. However, for the
medical data, this does not pose a critical barrier, since the radiology
data (such as the CT scans) of humans are acquired in similar data
format with common anatomical features. The attacker can obtain
representative datasets released for research purposes in public
domains. Moreover, because the attacker is a participant in the FL
system, we consider they may even collude with others to obtain
this auxiliary dataset.

DefenseMechanisms:An intuitive yet effective defense against
our attack is for clients to proactively verify the consistency of
model parameters and architectures during the FL training process,
rather than blindly trust the privacy guarantees of FL systems and
place full confidence in FL service providers—a trust that is preva-
lent in the current medical FL systems. However, we argue that our
attack can be initiated during the initial training rounds, or even in
the very first round, to maintain its stealthiness. This is because, in
the early stages of training, when everything is randomly initial-
ized, it becomes challenging for defenders to distinguish between
malicious activities and benign patterns that arise from random
initialization.

Another potential defense mechanism comes from the data syn-
thesis perspective, leveraging the inherent bottleneck of MedLeak.

Our comprehensive analysis reveals that the recovery bin size,
denoted as 𝑘 , plays a crucial role in affecting the attack perfor-
mance. Specifically, when the sample size𝑚 is much larger than 𝑘 ,
MedLeak’s performance drops significantly. Based on this finding,
the clients can generate largemask sets containing many images but
not exposing anything related to the original private local samples
to crowd the recovery bins. When the size of the mask set is large
enough, there will be a lot of collisions within the bins, and the
attacker can hardly recover anything. This defense strategy can
also be employed for other attacks that face similar performance
bottlenecks such as [9, 43]. However, the primary design challenge
for such defense is to avoid causing any performance degradation
when these mask sets are involved in the FL training process.

More than Linear Leakage: In this work, we leverage the fun-
damental “linear leakage” primitive as a powerful mathematical tool
to help us accomplish our attack. However, we acknowledge that
other types of model components such as the vision transformer
[16], and convolutional layers [43] may also be exploited to reverse
the model updates and leak private training data. These model com-
ponents are integral to popular machine-learning models and can
be exploited to launch the attack without the need to insert any
additional malicious modules. This would make the attack more
stealthy and adaptable for different victim models. However, de-
signing such an analytical gradient reverse method is non-trivial,
and we intend to explore such designs in future work.

7 Conclusion
In this paper, we present MedLeak–a novel MIA that targets cur-

rent FL systems designed for healthcare applications using sensitive
patient data. MedLeak can accurately and efficiently recover local
training samples at a clinical site, resulting in unwanted leakage of
private patient information. To achieve this, MedLeak requires the
parameter server (i.e., the attacker) to actively craft additional ad-
versarial attack modules before the global models. These adversarial
models are designed with the mathematical guarantee to effectively
break the secure aggregation protocol and efficiently recover hun-
dreds of samples in a batch without relying on costly optimization
methods when they are sent to the clients. We customize MedLeak
to recover both image and textual data records, as clinical data
usually comprises both types of samples, extending its applicability
to wider healthcare-related FL systems. We implement MedLeak on
multiple medical images and text datasets and our results highlight
MedLeak’s excellent attack performance under various real-world
settings. Our attack exposes a practical vulnerability of the cur-
rent medical FL systems, prompting the community to reconsider
the privacy guarantees of these systems and to develop effective
defenses against such advanced MIAs.

Acknowledgments
This work was supported in part by the Office of Naval Research

under grants N00014-24-1-2730 and N00014-19-1-2621, the Na-
tional Science Foundation under grants 2312447, 2247560, 2154929,
2332675, and 2235232, and Children’s National Hospital, the Sang-
hani Center for AI and Data Analytics, and the Fralin Biomedical
Research Institute at Virginia Tech.



CHASE ’25, June 24–26, 2025, New York, NY, USA Shanghao Shi, et al.

References
[1] Mohammed Adnan, Shivam Kalra, Jesse C Cresswell, Graham W Taylor, and

Hamid R Tizhoosh. 2022. Federated learning and differential privacy for medical
image analysis. Scientific reports 12, 1 (2022), 1953.

[2] SM Anwar, A Parida, S Atito, M Awais, G Nino, J Kitler, and MG Linguraru.
2023. SPCXR: Self-supervised Pretraining using Chest X-rays Towards a Domain
Specific Foundation Model. (2023).

[3] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and
Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic
overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 1253–1269.

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[5] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch
Paschalidis, and Wei Shi. 2018. Federated learning of predictive models from
federated electronic health records. International journal of medical informatics
112 (2018), 59–67.

[6] Lukas Burkhalter, Hidde Lycklama, Alexander Viand, Nicolas Küchler, and Anwar
Hithnawi. 2021. Rofl: Attestable robustness for secure federated learning. arXiv
e-prints (2021), arXiv–2107.

[7] Beongjun Choi, Jy-yong Sohn, Dong-Jun Han, and Jaekyun Moon. 2020.
Communication-computation efficient secure aggregation for federated learning.
arXiv preprint arXiv:2012.05433 (2020).

[8] Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare Gentili,
Anas Z Abidin, Andrew Liu, Anthony Beardsworth Costa, Bradford J Wood,
Chien-Sung Tsai, et al. 2021. Federated learning for predicting clinical outcomes
in patients with COVID-19. Nature medicine 27, 10 (2021), 1735–1743.

[9] Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein.
2021. Robbing the fed: Directly obtaining private data in federated learning with
modified models. International Conference on Learning Representations (ICLR)
(2021).

[10] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing
Guo, Jun Zhou, Alex X Liu, and Ting Wang. 2022. Label inference attacks against
vertical federated learning. In 31st USENIX security symposium (USENIX Security
22). 1397–1414.

[11] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller.
2020. Inverting gradients-how easy is it to break privacy in federated learning?
Advances in Neural Information Processing Systems 33 (2020), 16937–16947.

[12] Xiaojie Guo, Zheli Liu, Jin Li, Jiqiang Gao, Boyu Hou, Changyu Dong, and Thar
Baker. 2020. V eri fl: Communication-efficient and fast verifiable aggregation for
federated learning. IEEE Transactions on Information Forensics and Security 16
(2020), 1736–1751.

[13] Swanand Kadhe, Nived Rajaraman, OOzan Koyluoglu, and Kannan Ramchandran.
2020. Fastsecagg: Scalable secure aggregation for privacy-preserving federated
learning. arXiv preprint arXiv:2009.11248 (2020).

[14] Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin Wang, Yufen Huang,
Christophe Dupuy, Rahul Gupta, Mahdi Soltanolkotabi, Xiang Ren, and Salman
Avestimehr. 2021. Fednlp: Benchmarking federated learning methods for natural
language processing tasks. arXiv preprint arXiv:2104.08815 (2021).

[15] Ming Liu, Stella Ho, Mengqi Wang, Longxiang Gao, Yuan Jin, and He Zhang.
2021. Federated learning meets natural language processing: A survey. arXiv
preprint arXiv:2107.12603 (2021).

[16] Jiahao Lu, Xi Sheryl Zhang, Tianli Zhao, Xiangyu He, and Jian Cheng. 2022.
APRIL: Finding the Achilles’ Heel on Privacy for Vision Transformers. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10051–10060.

[17] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. 2021. Feature
inference attack on model predictions in vertical federated learning. In 2021 IEEE
37th International Conference on Data Engineering (ICDE). IEEE, 181–192.

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[19] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In 2019 IEEE symposium on security and privacy
(SP). IEEE, 739–753.

[20] Dianwen Ng, Xiang Lan, Melissa Min-Szu Yao, Wing P Chan, and Mengling Feng.
2021. Federated learning: a collaborative effort to achieve better medical imaging
models for individual sites that have small labelled datasets. Quantitative Imaging
in Medicine and Surgery 11, 2 (2021), 852.

[21] Dinh C Nguyen, Quoc-Viet Pham, Pubudu N Pathirana, Ming Ding, Aruna Senevi-
ratne, Zihuai Lin, Octavia Dobre, and Won-Joo Hwang. 2022. Federated learning
for smart healthcare: A survey. ACM Computing Surveys (Csur) 55, 3 (2022), 1–37.

[22] Masoud Nickparvar. 2022. Brain Tumor MRI Dataset: A dataset for classify-
ing brain tumors. https://www.kaggle.com/datasets/masoudnickparvar/brain-
tumor-mri-dataset

[23] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. 2022. Eluding secure
aggregation in federated learning via model inconsistency. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
2429–2443.

[24] Sarthak Pati, Ujjwal Baid, Maximilian Zenk, Brandon Edwards, Micah Sheller,
G Anthony Reina, Patrick Foley, Alexey Gruzdev, Jason Martin, Shadi Albarqouni,
et al. 2021. The federated tumor segmentation (fets) challenge. arXiv preprint
arXiv:2105.05874 (2021).

[25] Bjarne Pfitzner, Nico Steckhan, and Bert Arnrich. 2021. Federated learning in
a medical context: a systematic literature review. ACM Transactions on Internet
Technology (TOIT) 21, 2 (2021), 1–31.

[26] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. 2022. Robust aggregation
for federated learning. IEEE Transactions on Signal Processing 70 (2022), 1142–
1154.

[27] G Anthony Reina, Alexey Gruzdev, Patrick Foley, Olga Perepelkina, Mansi
Sharma, Igor Davidyuk, Ilya Trushkin, Maksim Radionov, Aleksandr Mokrov,
Dmitry Agapov, et al. 2021. OpenFL: An open-source framework for Federated
Learning. arXiv preprint arXiv:2105.06413 (2021).

[28] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi
Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-
Hein, et al. 2020. The future of digital health with federated learning. NPJ digital
medicine 3, 1 (2020), 119.

[29] Holger R Roth, Yan Cheng, Yuhong Wen, Isaac Yang, Ziyue Xu, Yuan-Ting Hsieh,
Kristopher Kersten, Ahmed Harouni, Can Zhao, Kevin Lu, et al. 2022. Nvidia flare:
Federated learning from simulation to real-world. arXiv preprint arXiv:2210.13291
(2022).

[30] Tim Schopf, Daniel Braun, and Florian Matthes. 2023. Evaluating Unsupervised
Text Classification: Zero-Shot and Similarity-Based Approaches. In Proceedings
of the 2022 6th International Conference on Natural Language Processing and
Information Retrieval (Bangkok, Thailand) (NLPIR ’22). Association for Computing
Machinery, New York, NY, USA, 6–15. https://doi.org/10.1145/3582768.3582795

[31] Micah J Sheller, Brandon Edwards, G Anthony Reina, Jason Martin, Sarthak Pati,
Aikaterini Kotrotsou, Mikhail Milchenko, Weilin Xu, Daniel Marcus, Rivka R
Colen, et al. 2020. Federated learning in medicine: facilitating multi-institutional
collaborations without sharing patient data. Scientific reports 10, 1 (2020), 12598.

[32] Shanghao Shi, Ning Wang, Yang Xiao, Chaoyu Zhang, Yi Shi, Y Thomas Hou, and
Wenjing Lou. 2025. Scale-MIA: A Scalable Model Inversion Attack against Secure
Federated Learning via Latent Space Reconstruction. Network and Distributed
System Security (NDSS) Symposium (2025).

[33] Keri Stephens. 2021. Rhino Health Raises 5 Million to Improve AI Workflows in
Healthcare Using Federated Learning. AXIS Imaging News (2021).

[34] Linda Wang, Zhong Qiu Lin, and Alexander Wong. 2020. Covid-net: A tailored
deep convolutional neural network design for detection of covid-19 cases from
chest x-ray images. Scientific reports 10, 1 (2020), 19549.

[35] LixuWang, Shichao Xu, XiaoWang, and Qi Zhu. 2019. Eavesdrop the composition
proportion of training labels in federated learning. arXiv preprint arXiv:1910.06044
(2019).

[36] Ning Wang, Yang Xiao, Yimin Chen, Ning Zhang, Wenjing Lou, and Y Thomas
Hou. 2022. Squeezing more utility via adaptive clipping on differentially private
gradients in federated meta-learning. In Proceedings of the 38th Annual Computer
Security Applications Conference. 647–657.

[37] KangWei, Jun Li, Ming Ding, Chuan Ma, Hang Su, Bo Zhang, and H Vincent Poor.
2021. User-level privacy-preserving federated learning: Analysis and performance
optimization. IEEE Transactions on Mobile Computing 21, 9 (2021), 3388–3401.

[38] YuxinWen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein. 2022.
Fishing for user data in large-batch federated learning via gradient magnification.
arXiv preprint arXiv:2202.00580 (2022).

[39] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter
Pfister, and Bingbing Ni. 2023. MedMNIST v2-A large-scale lightweight bench-
mark for 2D and 3D biomedical image classification. Scientific Data 10, 1 (2023),
41.

[40] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo
Molchanov. 2021. See through gradients: Image batch recovery via gradinver-
sion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 16337–16346.

[41] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. 2021. A
survey on federated learning. Knowledge-Based Systems 216 (2021), 106775.

[42] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. idlg: Improved deep
leakage from gradients. arXiv preprint arXiv:2001.02610 (2020).

[43] Joshua Christian Zhao, Atul Sharma, Ahmed Roushdy Elkordy, Yahya H Ezzeldin,
Salman Avestimehr, and Saurabh Bagchi. 2023. LOKI: Large-scale Data Recon-
struction Attack against Federated Learning through Model Manipulation. In
2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 30–30.

[44] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients.
Advances in neural information processing systems 32 (2019).

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
https://doi.org/10.1145/3582768.3582795

	Abstract
	1 Introduction
	2 Background
	2.1 Federated Learning
	2.2 Model Inversion Attacks
	2.3 Secure Aggregation
	2.4 Attack Summary and Comparison

	3 Threat Model
	4 Attack Method
	4.1 Attack Overview
	4.2 Detailed Attack Flow
	4.3 Proof of Correctness
	4.4 Text Data Reconstruction

	5 Evaluation
	5.1 Experimental Settings
	5.2 Image Reconstruction Results
	5.3 Benchmark Comparison
	5.4 Vision Downstream Tasks
	5.5 Text Reconstruction Results
	5.6 Performance Affecting Factors

	6 Discussion and Future Work
	7 Conclusion
	References

