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 Many time-sensitive applications impose stringent time synchronization requirements. 
Failure to meet these requirements causes significant consequences.
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Why Time Synchronization is Important?

[1] 3GPP, “Study on the enhancement of ultra-reliable low-latency communication (urllc) support in the 5g core network (5gc),” Tech. Rep., 6 2019,3GPP TR23.725 V16.2.0 (Release16).
[2] O. Obleukhov and A. Byagowi, “How precision time protocol is being deployed at meta,” 2022. [Online]. vailable: https://engineering.fb.com/2022/11/21/productionengineering/precision-time-protocol-at-meta/
[3] “Ieee standard for local and metropolitan area networks–timing and synchronization for time-sensitive applications,” IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.
[4] A. Li, J. Wang, and N. Zhang, “Chronos: Timing interference as a new attack vector on autonomous cyber-physical systems,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer and 
Communications Security, ser. CCS ’21. New York, NY, USA: Association for Computing Machinery, 2021, p. 2426–2428.

The 5G URLLC requires a 1.5 us level 
synchronization to avoid performance 
degradation and communication failures [1].  

Milliseconds-level de-synchronization among 
servers in high-performance computing clusters 
trigger a 100x performance degradation [2].

IEEE time-sensitive networking standard 
(802.1) requires its clocks to be 
synchronized within 1 us [3].

Sensor de-synchronization in autonomous 
driving cars can cause temporal 
displacements in critical control states and 
cause safety hazards to humans [4].



 Currently there are three well-received time synchronization mechanisms: the network time 
protocol (NTP), the precision time protocol (PTP), and GPS-based mechanisms.

 In this work, we focus on the precision time protocol (PTP), because it is the de-facto time 
synchronization mechanism used by various time- and latency-sensitive networks. 
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Time Synchronization Mechanisms

GPS NTP PTP [5]
Accuracy ~100ns ~50ms <100us

Service area Outdoor only, need GPS antenna Internet Local-area networks

Work mode Broadcast Client-Server Client-Server

Use case Mobile phones Desktop/ Laptop Time- and latency-sensitive networks

[5] J. C. Eidson, M. Fischer, and J. White, “Ieee-1588  standard for a precision clock synchronization protocol for networked measurement and control systems,” in Proceedings of the 34th Annual Precise Time 
and Time Interval Systems and Applications Meeting, 2002, pp. 243–254.

Table 1: The comparison of different time synchronization mechanisms.



 The Precision Time Protocol (PTP), originally developed by the IEEE 1588 working group [4], 
is widely regarded as the de-facto solution to highly accurate clock synchronization. 
 PTP guarantees a sub-microsecond level accuracy.
 PTP has higher accuracy than network time protocol (NTP) and better flexibility than GPS. 
 PTP establishes a tree-structured, master-slave hierarchy.
 The reference timing information is transferred from PTP server to its clients through a two-way 

time transfer mechanism.
 Many industrial standards have specified PTP as their time synchronization mechanism.
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Precision Time Protocol Overview

Fig 2: The client-server work mode of PTP.

Industrial Fields Standards
Time Sensitive Networking (TSN) [3]

Smart grids [6]

Telecom ITUT 8265.1

Automotive [3]

[6] “Ieee standard profile for use of ieee 1588 precision time protocol in power system applications,” IEEE Std C37.238-2017 (Revision of IEEE Std C37.238-2011), pp. 1–42, 2017.

Table 2: Industrial standards use PTP to provide timing service.



 PTP establishes a tree-structured, master-slave hierarchy.
 Within PTP’s terminology, the most accurate clock--the grandmaster clock (GM), is elected as the 

unique time server; The intermediate routers and servers are known as boundary clocks (BCs) or 
transparent clocks (TCs); And the end leaves are ordinary clocks(OCs).

 PTP specifies a dynamic leader election procedure to build up this architecture.
 Every node proactively listens for a specific message—the ANNOUNCE message that contains 

the identity and clock quality of its sender.
 Upon reception, the node determines the master-slave relationship with the message sender 

by a pre-defined best master clock algorithm (BMCA).
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Elect the Best Time Master

Fig 3: PTP network hierarchy. Fig 4: The clock information contained 
in the ANNOUNCE message.



 PTP utilizes a two-way time transfer method to transfer timing information.
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Two Way Time Transfer

 The client measures its offset and skew with 
the master clock and calibrates its clock.

 Standard RTT estimator:
 offset = ((t4−CF2 − t3) − (t2−CF1 − t1))/2
 skew = (offsetn − offset1)/(tn − t1)

 Except from the standard RTT estimator, there 
are other methods such as least-square 
estimator and Kalman filter. 

Fig 5: TWTT workflow.

Presenter Notes
Presentation Notes
The master clock first sends a SYNC message and during the transmission,The transparent clocks record the residence timeSummarize the factor that infects the acc and reliability of the protocol



 The vanilla version of PTP was designed decades ago and has no built-in security 
mechanism. As a result, PTP can be easily disrupted by simple network-level time-shifting 
attacks through message spoofing and modification [7, 8, 9].

 Luckily, currently there are several works focusing on addressing them:
 The latest version of PTP recommends group key-based direct authentication and TELSA-based 

delayed authentication to support message authentication [10].
 [9] proposes an elliptic curve-based and public-key signature scheme to establish the 

authenticity of network clocks. 
 [11] specifies a key management scheme to help establish message authentication.

 But little attention has been paid to insider adversaries, who are compromised legitimate 
participants of the system. They act as Byzantine insiders and the current mechanisms 
fail to address them.
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Existing Work
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[10] Ieee standard for a precision clock synchronization protocol for networked measurement and control systems,” IEEE Std 1588-2019 (Revision of IEEE Std 1588-2008), pp. 1–499, 2020.
[11] NTS4PTP - Key Management System for the Precision Time Protocol Based on the Network Time Security Protocol. Available at: https://www.ietf.org/id/draft-langer-ntp-nts-for-ptp-04.html



 In this work, we first focus on investigating insider attacks. We are going to answer the 
following 4 questions:
 (a) Can an insider node jeopardize the operation of others in the current PTP networks? 
 (b) If so, to what extent can they infect the time of the victim node? 
 (c) Can the current defense mechanisms counter these attacks?
 (d) What is the consequence caused by insider attacks on real systems?
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What about Insider Attack?



 We deploy a real Raspberry Pi 4 testbed to demonstrate and evaluate our attack. 
 We do not assume the attacker to be the existing grandmaster or Man-in-the-middle 

attacker, for this makes the attack trivial. We also assume an authentication mechanism is 
in place and the attack shall bypass it by design.

 We assume the attacker controls one client node and it is able to know essential operation 
parameters and secret keys, as well as monitor PTP traffic and send malicious packets.
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Attack Settings: Testbed and Attack Model

Fig 6: PTP testbed.



 The victim implementations are current well-known PTP software:
 PTPD Daemon [12]
 Linuxptp [13]: Default profile, telecom profile, and unicast profile.

 The attacker’s goal is to shift the system time of a chosen victim node and we investigate the 
attacker’s capability by letting the attacker add the malicious delay 𝑑𝑑 constantly (2 seconds), 
randomly (mean 1.5 seconds, standard deviation (std) 0.5 second) and cumulatively (25 
milliseconds per packet) over a 120 seconds attack period.
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Attack settings: Target and Strategies

[12] PTPD Daemon, https://www.ibm.com/docs/zh/aix/7.1?topic=p-ptpd-daemon.
[13] Linux, “An implementation of the Precision Time Protocol (PTP) according to IEEE standard 1588 for Linux.” 2011. [Online]. Available: https://linuxptp.sourceforge.net/

https://www.ibm.com/docs/zh/aix/7.1?topic=p-ptpd-daemon


 We carry out a time-shifting attack in 4 steps:
 Phase 1: Clock information extraction: The attacker 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 reads the current transmitting 

ANNOUNCE message 𝐴𝐴𝐴𝐴𝐴𝐴ℎ on its UDP port 320 and extracts the current GM's clock quality 
information 𝑞𝑞ℎ from the message payload.

 Phase 2: Priority inversion: The attacker adjusts the clock quality information according to the 
BMCA-defined clock quality comparison rules, such as increasing the clock priority level by one to 
generate a better clock quality information as 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎. The attacker generates a malicious 
ANNOUNCE message 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 according to the authentication mechanism used in the system. For 
the digital signature-based method, 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖||𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎 ||𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑖𝑖 . For the symmetric key-based 
method, 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎||𝑀𝑀𝐴𝐴𝑀𝑀sk𝑛𝑛𝑖𝑖 .
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Attack Approach (1)



 Phase 3: Injection and confirmation: The attacker broadcasts 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 periodically through UDP 
port 320. At the same time, the attacker monitors the incoming messages on this port and if the 
attacker fails to receive any incoming ANNOUNCE message for a certain time interval 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, there is 
a high probability that nodes in the network have already taken 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 as the new grandmaster.

 Phase 4: Time shifting: After the confirmation, the attacker starts the PTP engine to send 
erroneous information. It follows the normal PTP workflow (i.e. TWTT) but modifies the timestamp 
field of the SYNC message only to its victim by adding a delay 𝑑𝑑 to 𝑡𝑡1. 𝑑𝑑 can be a constant delay, a 
random delay, or a cumulative increasing delay. By protocol, the offset measured at the victim 
device is shifted by 𝑑𝑑/2. This malicious 𝑆𝑆𝑆𝑆𝐴𝐴𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 message is also attached with a proper digital 
signature or message authentication code generated by the shared credentials between the 
attacker and the victim node.
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Attack Approach(2)
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Attack Results

Fig 9: Adding Random Delays.Fig 8: Adding Constant Delays.Fig 7: Adding Cumulative Delays.

 The attacker successfully shifted the system time of victim nodes in different settings!



 We investigate the effect of timing attack on a real Turtlebot 3 robotic pltform, who 
receives sensor inputs and commands from the cloud.

 Our timing attack de-synchronize the sensor inputs and commands to the robot.
 In our experiment, the robot fails to localize and control itself and goes to a false trajectory.
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Case study: Timing Attack on a Real System

Fig 10: PTP attack on robotic platforms



 The attack has shown that a PTP network relying on a single-time source can be easily 
disrupted by any Byzantine insider existing on the server-client communication path.

 We adopt the fundamental idea of using multiple servers to counter Byzantine sources from 
the very famous Byzantine fault tolerance state machine replication (BFT-SMR) scheme.

 This idea is in line with PTP's developing trend--the newest version has already dictated the 
use of redundant servers to build robust synchronization services.

 Fortunately, current PTP leaves room for the simultaneous existence of multiple servers. This 
can be achieved by properly configuring the PTP software’s . 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 file. Each PTP client can 
open up multiple PTP sessions, with each one having its own domain number. By design 
different PTP sessions in different domains do not cause interference to others and within 
each domain, there can be a time server.
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Lesson learned



 Network Model:
 We assume there are 𝑚𝑚 different servers simultaneously exist in the network and an individual client can 

fetch 𝑛𝑛 of them. Among these 𝑛𝑛 PTP sessions, 𝑐𝑐 of them are compromised by insider adversaries.
 As a result, 𝑐𝑐 of the measurements received by a client is byzantine, denoted by (𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛−𝑓𝑓, 𝑏𝑏1, … , 𝑏𝑏𝑓𝑓). 

The honest measurements 𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛−𝑓𝑓 follows gaussian distribution 𝑑𝑑𝑖𝑖~𝐴𝐴 𝑠𝑠,𝜎𝜎𝑖𝑖2 . The general 
representation of a measurement (without knowing its honesty or not) is 𝑣𝑣𝑖𝑖 (𝑠𝑠 = 1,2, … ,𝑛𝑛).

 The system’s time synchronization requirement for a client is represented as 𝑟𝑟.
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MS-PTP System Model

Fig 11 (a): The network model.

Presenter Notes
Presentation Notes
The reason why we keep the representation form of () is that this is useful for our theoretical analysis.



 Threat Model:
 An insider attacker can exhibit arbitrary behaviors such as delaying, intercepting, manipulating and replaying 

the packets. Insider attackers can also collude with each other. Consequently, any time synchronization 
session involving an insider attacker becomes a Byzantine session that delivers arbitrary timing measurement 
to the client (i.e. the byzantine measurements 𝑏𝑏1, … , 𝑏𝑏𝑓𝑓 follows arbitrary distribution).

 The only limitation for the adversary‘s capability is that they are the minority of the total population and the 
number of them is smaller than a threshold 𝑐𝑐.
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MS-PTP Threat Model

Fig 11 (b): The threat model.
Attacker

Presenter Notes
Presentation Notes
The reason why we keep the representation form of () is that this is useful for our theoretical analysis.



 Uncertainty level assumption:
 The standard deviation σ𝑖𝑖 of an honest session is considered significantly smaller than the system‘s 

synchronization requirement 𝑟𝑟.
 The probability that a measurement from an honest session violates the requirement 𝑟𝑟 is P |𝑑𝑑𝑖𝑖 − 𝑠𝑠 > 𝑟𝑟 =

1 − 1
2πσ𝑖𝑖

∫−r
𝑟𝑟 𝑒𝑒

− 𝑥𝑥2

2σ𝑖𝑖
2𝑑𝑑𝑑𝑑 or in the form of gaussian error function P |𝑑𝑑𝑖𝑖 − 𝑠𝑠 > 𝑟𝑟 =erfc( 𝑟𝑟

2σ𝑖𝑖
).

 This probability is considered as the unreliability rate of the system and is considerable small. For example, to 
achieve 5G URLLC's 10−7error rate, 𝑟𝑟 satisfies 𝑟𝑟 > 5.3 σ𝑖𝑖.
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MS-PTP System Assumption

Fig 12: The probability distribution of honest sessions.

Presenter Notes
Presentation Notes
Remember that we assume that there exists noise in the channel and the noise follow the gaussian distribution.The purpose of this section is to clarify the relationship between r and noise levelG+r is the max acceptable and vice verses



 System Goal:
 The goal is to establish a fault-tolerant time synchronization mechanism against insider adversaries when 

more than 2/3-majority of sessions are honest (𝑛𝑛 ≥ 3𝑐𝑐 + 1).

 Definition of robustness: 
 An aggregation rule A(𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑛𝑛−𝑓𝑓, 𝑏𝑏1, … , 𝑏𝑏𝑓𝑓) is r-robust when its output 𝑐𝑐 satisfies 𝐸𝐸 𝑐𝑐 − 𝑠𝑠 ≤ 𝑠𝑠 <
𝑟𝑟, where 𝑠𝑠 is a non-parametric bound and 𝑟𝑟 is the system’s requirement.
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MS-PTP System Assumption

Fig 11 (c): The system goal.
Attacker

Presenter Notes
Presentation Notes
Here comes a question about what is the definition of robustness



 The aggregation rule: We define a score 𝑆𝑆 𝑣𝑣𝑖𝑖 =
∑𝑗𝑗∈𝑁𝑁𝑁𝑁(𝑎𝑎𝑖𝑖) ||𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗||2, where 𝐴𝐴𝑀𝑀(𝑣𝑣𝑖𝑖) includes the 2𝑐𝑐 
nearest measurements of 𝑣𝑣𝑖𝑖. The aggregation rule is:

                     𝐺𝐺 = (f + 1)𝑎𝑎𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠𝑛𝑛 𝑖𝑖=1,2,…,𝑛𝑛 𝑆𝑆(𝑣𝑣𝑖𝑖)

                                 𝑐𝑐 = 1
𝑓𝑓+1

∑𝑤𝑤∈𝐺𝐺 𝑤𝑤

 Performance guarantee: We mathematically prove that 
the accuracy of the aggregation output 𝑐𝑐 is bounded by 
𝐸𝐸 𝑐𝑐 − 𝑠𝑠 ≤ 2𝜎𝜎𝑚𝑚𝑎𝑎𝑚𝑚, comparable to the output of 

honest sessions without attacks.
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MS-PTP Aggregation Rule

Fig 13: MS-PTP Algorithms

Presenter Notes
Presentation Notes
Finally, with all of the previous discussions, we come to the aggregation rule itself.What is interesting is that the aggregation rule itself is not difficult This is not a very complex algorithm but interestingly, it can guarantee a strong bound for the synchronization error



 Byzantine resilience: We provide mathematical proof for the Byzantine resiliency of MS-PTP. 
Detail results can be found in our paper.

 Complexity: MS-PTP increases the communication overhead by 𝑛𝑛 × when there are 𝑛𝑛 
servers. MS-PTP is a lightweight protocol and does not introduce a lot of computation 
overhead. The algorithm can be executed within several milliseconds

 Compatibility: MS-PTP only requires some customized configurations and is fully compatible 
with the current PTP standard. In case there are not enough PTP servers in the network, MS-
PTP may also resort to alternative external redundancy such as GPS sources and NTP 
sources.
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Analysis



 We analyze MS-PTP’s performance against the adaptive attacks assuming they have 
full knowledge of our defense mechanism with extensive simulations. 

 The attacker can conduct the following adaptive attack:
 Phase 1: Standard Deviation Estimation. The attackers conclude with each other to 

estimate the standard deviation of the honest measurements as 𝑠𝑠𝑡𝑡𝑑𝑑.
 Phase 2: Adding Malicious Measurements. The attackers introduce malicious 

measurements as 2𝑠𝑠𝑡𝑡𝑑𝑑 + 𝜀𝜀. 
 𝜀𝜀 can be a constant or increasing value.

 They still cannot break MS-PTP!
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MS-PTP against Adaptive Attacks

Fig 16: MS-PTP against adaptive attack.



 We use four Raspberry Pis to emulate the server pools that MS-PTP requires to counter 
Byzantine failures. 

 The PTP client takes the IP address (in LAN) of all four Raspberry Pis and configures its profile 
to establish independent sessions with them.

 This testbed supports hardware validation when the malicious population f = 1 and the 
number of servers n = 3f + 1 = 4.

 We open up multiple PTP sessions, each bound to an independent CPU core on the server 
node to experiment with a larger malicious population and testify to the overhead 
introduced by MS-PTP. Our testbed suffices for the experiment settings when n ≤ 16.
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Evaluation-Experiment Settings



 We evaluated the performance of MS-PTP still on our PTP testbed. We focused on checking 
the accuracy of the evaluated offsets of the system when the attack was launched.

 MS-PTP is resilient to the insider attack.
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Evaluation-Resiliency Against Attacks

Fig 14: MS-PTP accuracy performance under attack. In the figure, cu refers to 
cumulative delay, cs refers to constant delay and rd refers to random delay.



 For the communication overhead, we monitored the bandwidth consumed by the UDP port 
319 and 320 used by PTP during our experiment on the testbed.

 For the computation overhead, we checked MS-PTP’s execution time on one PC and 
Raspberry Pi.

 MS-PTP only introduced a small linear increasing overhead to the system.
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Evaluation-Comm and Comp overhead

Fig 15: BRENTS’ communication and computation overhead.



 We compared MS-PTP with other aggregation methods. The error bound of MS-PTP 
remained to be stable and was not affected by the population of network devices in our 
simulations.
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Evaluation-Scalability

Tab 4: MS-PTP scalability performance (measured offset in 
microseconds) under attack.



 We validated MS-PTP’s compatibility with NTP and GPS-based synchronization methods by 
introducing NTP servers and GPS servers as redundant time sources.

 We considered the existence of one malicious PTP server, but with either 3 NTP servers or 2 
NTP servers plus 1 GPS server serving as the honest redundancy.

 The result shows that MS-PTP is compatible with other time synchronization mechanisms.
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Evaluation-Compatibility

Tab 5: MS-PTP’s offset accuracy with GPS and NTP servers.



 We proposed MS-PTP, a Byzantine-resilient network time synchronization mechanism, to 
provide accurate clock synchronization service to clients without relying on the trust of any 
individual time source. 

 We first demonstrated through hardware experiments that the current PTP is susceptible to 
the insider time-shifting attack, in which one malicious time source can bring catastrophe to 
the system. 

 We devised a novel Byzantine-resilient aggregation scheme to generate a high-fidelity, error-
bounded measurement under the assumption that fewer than one-third of the 
measurements are Byzantine-influenced. 

 We implemented a proof-of-concept MS-PTP with our hardware testbed and evaluated its 
performance in various Byzantine-ridden network scenarios. 
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Conclusion



Thank You!

Questions?
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