
MS-PTP: Protecting Network Timing
from Byzantine Attacks

Shanghao Shi1, Yang Xiao2, Changlai Du1, Md Hasan Shahriar1, Ao Li3, Ning Zhang3, Y.
Thomas Hou1, and Wenjing Lou1

Virginia Tech1

University of Kentucky2

Washington University in St. Louis3

 Many time-sensitive applications impose stringent time synchronization requirements.
Failure to meet these requirements causes significant consequences.

2

Why Time Synchronization is Important?

[1] 3GPP, “Study on the enhancement of ultra-reliable low-latency communication (urllc) support in the 5g core network (5gc),” Tech. Rep., 6 2019,3GPP TR23.725 V16.2.0 (Release16).
[2] O. Obleukhov and A. Byagowi, “How precision time protocol is being deployed at meta,” 2022. [Online]. vailable: https://engineering.fb.com/2022/11/21/productionengineering/precision-time-protocol-at-meta/
[3] “Ieee standard for local and metropolitan area networks–timing and synchronization for time-sensitive applications,” IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.
[4] A. Li, J. Wang, and N. Zhang, “Chronos: Timing interference as a new attack vector on autonomous cyber-physical systems,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’21. New York, NY, USA: Association for Computing Machinery, 2021, p. 2426–2428.

The 5G URLLC requires a 1.5 us level
synchronization to avoid performance
degradation and communication failures [1].

Milliseconds-level de-synchronization among
servers in high-performance computing clusters
trigger a 100x performance degradation [2].

IEEE time-sensitive networking standard
(802.1) requires its clocks to be
synchronized within 1 us [3].

Sensor de-synchronization in autonomous
driving cars can cause temporal
displacements in critical control states and
cause safety hazards to humans [4].

 Currently there are three well-received time synchronization mechanisms: the network time
protocol (NTP), the precision time protocol (PTP), and GPS-based mechanisms.

 In this work, we focus on the precision time protocol (PTP), because it is the de-facto time
synchronization mechanism used by various time- and latency-sensitive networks.

3

Time Synchronization Mechanisms

GPS NTP PTP [5]
Accuracy ~100ns ~50ms <100us

Service area Outdoor only, need GPS antenna Internet Local-area networks

Work mode Broadcast Client-Server Client-Server

Use case Mobile phones Desktop/ Laptop Time- and latency-sensitive networks

[5] J. C. Eidson, M. Fischer, and J. White, “Ieee-1588 standard for a precision clock synchronization protocol for networked measurement and control systems,” in Proceedings of the 34th Annual Precise Time
and Time Interval Systems and Applications Meeting, 2002, pp. 243–254.

Table 1: The comparison of different time synchronization mechanisms.

 The Precision Time Protocol (PTP), originally developed by the IEEE 1588 working group [4],
is widely regarded as the de-facto solution to highly accurate clock synchronization.
 PTP guarantees a sub-microsecond level accuracy.
 PTP has higher accuracy than network time protocol (NTP) and better flexibility than GPS.
 PTP establishes a tree-structured, master-slave hierarchy.
 The reference timing information is transferred from PTP server to its clients through a two-way

time transfer mechanism.
 Many industrial standards have specified PTP as their time synchronization mechanism.

6

Precision Time Protocol Overview

Fig 2: The client-server work mode of PTP.

Industrial Fields Standards
Time Sensitive Networking (TSN) [3]

Smart grids [6]

Telecom ITUT 8265.1

Automotive [3]

[6] “Ieee standard profile for use of ieee 1588 precision time protocol in power system applications,” IEEE Std C37.238-2017 (Revision of IEEE Std C37.238-2011), pp. 1–42, 2017.

Table 2: Industrial standards use PTP to provide timing service.

 PTP establishes a tree-structured, master-slave hierarchy.
 Within PTP’s terminology, the most accurate clock--the grandmaster clock (GM), is elected as the

unique time server; The intermediate routers and servers are known as boundary clocks (BCs) or
transparent clocks (TCs); And the end leaves are ordinary clocks(OCs).

 PTP specifies a dynamic leader election procedure to build up this architecture.
 Every node proactively listens for a specific message—the ANNOUNCE message that contains

the identity and clock quality of its sender.
 Upon reception, the node determines the master-slave relationship with the message sender

by a pre-defined best master clock algorithm (BMCA).

5

Elect the Best Time Master

Fig 3: PTP network hierarchy. Fig 4: The clock information contained
in the ANNOUNCE message.

 PTP utilizes a two-way time transfer method to transfer timing information.

6

Two Way Time Transfer

 The client measures its offset and skew with
the master clock and calibrates its clock.

 Standard RTT estimator:
 offset = ((t4−CF2 − t3) − (t2−CF1 − t1))/2
 skew = (offsetn − offset1)/(tn − t1)

 Except from the standard RTT estimator, there
are other methods such as least-square
estimator and Kalman filter.

Fig 5: TWTT workflow.

Presenter Notes
Presentation Notes
The master clock first sends a SYNC message and during the transmission,The transparent clocks record the residence timeSummarize the factor that infects the acc and reliability of the protocol

 The vanilla version of PTP was designed decades ago and has no built-in security
mechanism. As a result, PTP can be easily disrupted by simple network-level time-shifting
attacks through message spoofing and modification [7, 8, 9].

 Luckily, currently there are several works focusing on addressing them:
 The latest version of PTP recommends group key-based direct authentication and TELSA-based

delayed authentication to support message authentication [10].
 [9] proposes an elliptic curve-based and public-key signature scheme to establish the

authenticity of network clocks.
 [11] specifies a key management scheme to help establish message authentication.

 But little attention has been paid to insider adversaries, who are compromised legitimate
participants of the system. They act as Byzantine insiders and the current mechanisms
fail to address them.

7

Existing Work

[7] C. DeCusatis, R. M. Lynch, W. Kluge, J. Houston, P. A. Wojciak, and S. Guendert, “Impact of cyberattacks on precision time protocol,” IEEE Transactions on Instrumentation and Measurement,
vol. 69, no. 5, pp. 2172–2181, 2019.
[8] W. Alghamdi and M. Schukat, “Cyber attacks on precision time protocol networks—a case study,” Electronics, vol. 9, no. 9, p. 1398, 2020.
[9] E. Itkin and A. Wool, “A security analysis and revised security extension for the precision time protocol,” IEEE Transactions on Dependable and Secure Computing, vol. 17, no. 1, pp. 22–34, 2017.
[10] Ieee standard for a precision clock synchronization protocol for networked measurement and control systems,” IEEE Std 1588-2019 (Revision of IEEE Std 1588-2008), pp. 1–499, 2020.
[11] NTS4PTP - Key Management System for the Precision Time Protocol Based on the Network Time Security Protocol. Available at: https://www.ietf.org/id/draft-langer-ntp-nts-for-ptp-04.html

 In this work, we first focus on investigating insider attacks. We are going to answer the
following 4 questions:
 (a) Can an insider node jeopardize the operation of others in the current PTP networks?
 (b) If so, to what extent can they infect the time of the victim node?
 (c) Can the current defense mechanisms counter these attacks?
 (d) What is the consequence caused by insider attacks on real systems?

8

What about Insider Attack?

 We deploy a real Raspberry Pi 4 testbed to demonstrate and evaluate our attack.
 We do not assume the attacker to be the existing grandmaster or Man-in-the-middle

attacker, for this makes the attack trivial. We also assume an authentication mechanism is
in place and the attack shall bypass it by design.

 We assume the attacker controls one client node and it is able to know essential operation
parameters and secret keys, as well as monitor PTP traffic and send malicious packets.

9

Attack Settings: Testbed and Attack Model

Fig 6: PTP testbed.

 The victim implementations are current well-known PTP software:
 PTPD Daemon [12]
 Linuxptp [13]: Default profile, telecom profile, and unicast profile.

 The attacker’s goal is to shift the system time of a chosen victim node and we investigate the
attacker’s capability by letting the attacker add the malicious delay 𝑑𝑑 constantly (2 seconds),
randomly (mean 1.5 seconds, standard deviation (std) 0.5 second) and cumulatively (25
milliseconds per packet) over a 120 seconds attack period.

10

Attack settings: Target and Strategies

[12] PTPD Daemon, https://www.ibm.com/docs/zh/aix/7.1?topic=p-ptpd-daemon.
[13] Linux, “An implementation of the Precision Time Protocol (PTP) according to IEEE standard 1588 for Linux.” 2011. [Online]. Available: https://linuxptp.sourceforge.net/

https://www.ibm.com/docs/zh/aix/7.1?topic=p-ptpd-daemon

 We carry out a time-shifting attack in 4 steps:
 Phase 1: Clock information extraction: The attacker 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 reads the current transmitting

ANNOUNCE message 𝐴𝐴𝐴𝐴𝐴𝐴ℎ on its UDP port 320 and extracts the current GM's clock quality
information 𝑞𝑞ℎ from the message payload.

 Phase 2: Priority inversion: The attacker adjusts the clock quality information according to the
BMCA-defined clock quality comparison rules, such as increasing the clock priority level by one to
generate a better clock quality information as 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎. The attacker generates a malicious
ANNOUNCE message 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 according to the authentication mechanism used in the system. For
the digital signature-based method, 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖||𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎 ||𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑖𝑖 . For the symmetric key-based
method, 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎||𝑀𝑀𝐴𝐴𝑀𝑀sk𝑛𝑛𝑖𝑖 .

11

Attack Approach (1)

 Phase 3: Injection and confirmation: The attacker broadcasts 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 periodically through UDP
port 320. At the same time, the attacker monitors the incoming messages on this port and if the
attacker fails to receive any incoming ANNOUNCE message for a certain time interval 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, there is
a high probability that nodes in the network have already taken 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 as the new grandmaster.

 Phase 4: Time shifting: After the confirmation, the attacker starts the PTP engine to send
erroneous information. It follows the normal PTP workflow (i.e. TWTT) but modifies the timestamp
field of the SYNC message only to its victim by adding a delay 𝑑𝑑 to 𝑡𝑡1. 𝑑𝑑 can be a constant delay, a
random delay, or a cumulative increasing delay. By protocol, the offset measured at the victim
device is shifted by 𝑑𝑑/2. This malicious 𝑆𝑆𝑆𝑆𝐴𝐴𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 message is also attached with a proper digital
signature or message authentication code generated by the shared credentials between the
attacker and the victim node.

12

Attack Approach(2)

13

Attack Results

Fig 9: Adding Random Delays.Fig 8: Adding Constant Delays.Fig 7: Adding Cumulative Delays.

 The attacker successfully shifted the system time of victim nodes in different settings!

 We investigate the effect of timing attack on a real Turtlebot 3 robotic pltform, who
receives sensor inputs and commands from the cloud.

 Our timing attack de-synchronize the sensor inputs and commands to the robot.
 In our experiment, the robot fails to localize and control itself and goes to a false trajectory.

14

Case study: Timing Attack on a Real System

Fig 10: PTP attack on robotic platforms

 The attack has shown that a PTP network relying on a single-time source can be easily
disrupted by any Byzantine insider existing on the server-client communication path.

 We adopt the fundamental idea of using multiple servers to counter Byzantine sources from
the very famous Byzantine fault tolerance state machine replication (BFT-SMR) scheme.

 This idea is in line with PTP's developing trend--the newest version has already dictated the
use of redundant servers to build robust synchronization services.

 Fortunately, current PTP leaves room for the simultaneous existence of multiple servers. This
can be achieved by properly configuring the PTP software’s . 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 file. Each PTP client can
open up multiple PTP sessions, with each one having its own domain number. By design
different PTP sessions in different domains do not cause interference to others and within
each domain, there can be a time server.

15

Lesson learned

 Network Model:
 We assume there are 𝑚𝑚 different servers simultaneously exist in the network and an individual client can

fetch 𝑛𝑛 of them. Among these 𝑛𝑛 PTP sessions, 𝑐𝑐 of them are compromised by insider adversaries.
 As a result, 𝑐𝑐 of the measurements received by a client is byzantine, denoted by (𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛−𝑓𝑓, 𝑏𝑏1, … , 𝑏𝑏𝑓𝑓).

The honest measurements 𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛−𝑓𝑓 follows gaussian distribution 𝑑𝑑𝑖𝑖~𝐴𝐴 𝑠𝑠,𝜎𝜎𝑖𝑖2 . The general
representation of a measurement (without knowing its honesty or not) is 𝑣𝑣𝑖𝑖 (𝑠𝑠 = 1,2, … ,𝑛𝑛).

 The system’s time synchronization requirement for a client is represented as 𝑟𝑟.

16

MS-PTP System Model

Fig 11 (a): The network model.

Presenter Notes
Presentation Notes
The reason why we keep the representation form of () is that this is useful for our theoretical analysis.

 Threat Model:
 An insider attacker can exhibit arbitrary behaviors such as delaying, intercepting, manipulating and replaying

the packets. Insider attackers can also collude with each other. Consequently, any time synchronization
session involving an insider attacker becomes a Byzantine session that delivers arbitrary timing measurement
to the client (i.e. the byzantine measurements 𝑏𝑏1, … , 𝑏𝑏𝑓𝑓 follows arbitrary distribution).

 The only limitation for the adversary‘s capability is that they are the minority of the total population and the
number of them is smaller than a threshold 𝑐𝑐.

17

MS-PTP Threat Model

Fig 11 (b): The threat model.
Attacker

Presenter Notes
Presentation Notes
The reason why we keep the representation form of () is that this is useful for our theoretical analysis.

 Uncertainty level assumption:
 The standard deviation σ𝑖𝑖 of an honest session is considered significantly smaller than the system‘s

synchronization requirement 𝑟𝑟.
 The probability that a measurement from an honest session violates the requirement 𝑟𝑟 is P |𝑑𝑑𝑖𝑖 − 𝑠𝑠 > 𝑟𝑟 =

1 − 1
2πσ𝑖𝑖

∫−r
𝑟𝑟 𝑒𝑒

− 𝑥𝑥2

2σ𝑖𝑖
2𝑑𝑑𝑑𝑑 or in the form of gaussian error function P |𝑑𝑑𝑖𝑖 − 𝑠𝑠 > 𝑟𝑟 =erfc(𝑟𝑟

2σ𝑖𝑖
).

 This probability is considered as the unreliability rate of the system and is considerable small. For example, to
achieve 5G URLLC's 10−7error rate, 𝑟𝑟 satisfies 𝑟𝑟 > 5.3 σ𝑖𝑖.

18

MS-PTP System Assumption

Fig 12: The probability distribution of honest sessions.

Presenter Notes
Presentation Notes
Remember that we assume that there exists noise in the channel and the noise follow the gaussian distribution.The purpose of this section is to clarify the relationship between r and noise levelG+r is the max acceptable and vice verses

 System Goal:
 The goal is to establish a fault-tolerant time synchronization mechanism against insider adversaries when

more than 2/3-majority of sessions are honest (𝑛𝑛 ≥ 3𝑐𝑐 + 1).

 Definition of robustness:
 An aggregation rule A(𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑛𝑛−𝑓𝑓, 𝑏𝑏1, … , 𝑏𝑏𝑓𝑓) is r-robust when its output 𝑐𝑐 satisfies 𝐸𝐸 𝑐𝑐 − 𝑠𝑠 ≤ 𝑠𝑠 <
𝑟𝑟, where 𝑠𝑠 is a non-parametric bound and 𝑟𝑟 is the system’s requirement.

19

MS-PTP System Assumption

Fig 11 (c): The system goal.
Attacker

Presenter Notes
Presentation Notes
Here comes a question about what is the definition of robustness

 The aggregation rule: We define a score 𝑆𝑆 𝑣𝑣𝑖𝑖 =
∑𝑗𝑗∈𝑁𝑁𝑁𝑁(𝑎𝑎𝑖𝑖) ||𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗||2, where 𝐴𝐴𝑀𝑀(𝑣𝑣𝑖𝑖) includes the 2𝑐𝑐
nearest measurements of 𝑣𝑣𝑖𝑖. The aggregation rule is:

 𝐺𝐺 = (f + 1)𝑎𝑎𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠𝑛𝑛 𝑖𝑖=1,2,…,𝑛𝑛 𝑆𝑆(𝑣𝑣𝑖𝑖)

 𝑐𝑐 = 1
𝑓𝑓+1

∑𝑤𝑤∈𝐺𝐺 𝑤𝑤

 Performance guarantee: We mathematically prove that
the accuracy of the aggregation output 𝑐𝑐 is bounded by
𝐸𝐸 𝑐𝑐 − 𝑠𝑠 ≤ 2𝜎𝜎𝑚𝑚𝑎𝑎𝑚𝑚, comparable to the output of

honest sessions without attacks.

20

MS-PTP Aggregation Rule

Fig 13: MS-PTP Algorithms

Presenter Notes
Presentation Notes
Finally, with all of the previous discussions, we come to the aggregation rule itself.What is interesting is that the aggregation rule itself is not difficult This is not a very complex algorithm but interestingly, it can guarantee a strong bound for the synchronization error

 Byzantine resilience: We provide mathematical proof for the Byzantine resiliency of MS-PTP.
Detail results can be found in our paper.

 Complexity: MS-PTP increases the communication overhead by 𝑛𝑛 × when there are 𝑛𝑛
servers. MS-PTP is a lightweight protocol and does not introduce a lot of computation
overhead. The algorithm can be executed within several milliseconds

 Compatibility: MS-PTP only requires some customized configurations and is fully compatible
with the current PTP standard. In case there are not enough PTP servers in the network, MS-
PTP may also resort to alternative external redundancy such as GPS sources and NTP
sources.

21

Analysis

 We analyze MS-PTP’s performance against the adaptive attacks assuming they have
full knowledge of our defense mechanism with extensive simulations.

 The attacker can conduct the following adaptive attack:
 Phase 1: Standard Deviation Estimation. The attackers conclude with each other to

estimate the standard deviation of the honest measurements as 𝑠𝑠𝑡𝑡𝑑𝑑.
 Phase 2: Adding Malicious Measurements. The attackers introduce malicious

measurements as 2𝑠𝑠𝑡𝑡𝑑𝑑 + 𝜀𝜀.
 𝜀𝜀 can be a constant or increasing value.

 They still cannot break MS-PTP!

22

MS-PTP against Adaptive Attacks

Fig 16: MS-PTP against adaptive attack.

 We use four Raspberry Pis to emulate the server pools that MS-PTP requires to counter
Byzantine failures.

 The PTP client takes the IP address (in LAN) of all four Raspberry Pis and configures its profile
to establish independent sessions with them.

 This testbed supports hardware validation when the malicious population f = 1 and the
number of servers n = 3f + 1 = 4.

 We open up multiple PTP sessions, each bound to an independent CPU core on the server
node to experiment with a larger malicious population and testify to the overhead
introduced by MS-PTP. Our testbed suffices for the experiment settings when n ≤ 16.

23

Evaluation-Experiment Settings

 We evaluated the performance of MS-PTP still on our PTP testbed. We focused on checking
the accuracy of the evaluated offsets of the system when the attack was launched.

 MS-PTP is resilient to the insider attack.

24

Evaluation-Resiliency Against Attacks

Fig 14: MS-PTP accuracy performance under attack. In the figure, cu refers to
cumulative delay, cs refers to constant delay and rd refers to random delay.

 For the communication overhead, we monitored the bandwidth consumed by the UDP port
319 and 320 used by PTP during our experiment on the testbed.

 For the computation overhead, we checked MS-PTP’s execution time on one PC and
Raspberry Pi.

 MS-PTP only introduced a small linear increasing overhead to the system.

25

Evaluation-Comm and Comp overhead

Fig 15: BRENTS’ communication and computation overhead.

 We compared MS-PTP with other aggregation methods. The error bound of MS-PTP
remained to be stable and was not affected by the population of network devices in our
simulations.

26

Evaluation-Scalability

Tab 4: MS-PTP scalability performance (measured offset in
microseconds) under attack.

 We validated MS-PTP’s compatibility with NTP and GPS-based synchronization methods by
introducing NTP servers and GPS servers as redundant time sources.

 We considered the existence of one malicious PTP server, but with either 3 NTP servers or 2
NTP servers plus 1 GPS server serving as the honest redundancy.

 The result shows that MS-PTP is compatible with other time synchronization mechanisms.

27

Evaluation-Compatibility

Tab 5: MS-PTP’s offset accuracy with GPS and NTP servers.

 We proposed MS-PTP, a Byzantine-resilient network time synchronization mechanism, to
provide accurate clock synchronization service to clients without relying on the trust of any
individual time source.

 We first demonstrated through hardware experiments that the current PTP is susceptible to
the insider time-shifting attack, in which one malicious time source can bring catastrophe to
the system.

 We devised a novel Byzantine-resilient aggregation scheme to generate a high-fidelity, error-
bounded measurement under the assumption that fewer than one-third of the
measurements are Byzantine-influenced.

 We implemented a proof-of-concept MS-PTP with our hardware testbed and evaluated its
performance in various Byzantine-ridden network scenarios.

28

Conclusion

Thank You!

Questions?

	MS-PTP: Protecting Network Timing from Byzantine Attacks
	Why Time Synchronization is Important?
	Time Synchronization Mechanisms
	Precision Time Protocol Overview
	Elect the Best Time Master
	Two Way Time Transfer
	Existing Work
	What about Insider Attack?
	Attack Settings: Testbed and Attack Model
	Attack settings: Target and Strategies
	Attack Approach (1)
	Attack Approach(2)
	Attack Results
	Case study: Timing Attack on a Real System
	Lesson learned
	MS-PTP System Model
	MS-PTP Threat Model
	MS-PTP System Assumption
	MS-PTP System Assumption
	MS-PTP Aggregation Rule
	Analysis
	MS-PTP against Adaptive Attacks
	Evaluation-Experiment Settings
	Evaluation-Resiliency Against Attacks
	Evaluation-Comm and Comp overhead
	Evaluation-Scalability
	Evaluation-Compatibility
	Conclusion
	Slide Number 29

