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Federated Learning Applications

Home > Blog >

) What'snew  NVIDIA FLARE DAY 2024
Improving Gboard language

\

NVIDIA FLARE

models via private federated
analytics

April 19, 2024 - Ziteng Sun, Research Scientist, Google Research, and Haicheng Sun, Software Engineer, Android

o~
Gboard E
I

Mobile Apps
Computing Platforms Rhino Health Platform Powers Hospital-Based Federated

Healthcare Learning Consortium - O oithups

Healthcare Institutions Around the Globe Collaborate with Disparate Data Securely to
e Transform Healthcare Al Development and Clinical Translation

May 05, 2022 09:00 ET | Source: Rhino Health m

NVIDIA FLARE™ (NVIDIA Federated Learning Application
Runtime Environment) is a domain-agnostic, open-source,
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and extensible SDK for Federated Learning. It allows
researchers and data scientists to adapt existing ML/DL
workflow to a federated paradigm and enables platform

developers to build a secure, privacy-preserving offering for
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Centralized v.s. Federated Learning
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Centralized Learning
B Participants share data with the server.
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Federated Learning
B Participants collaboratively train models.
B Participants’ data remains local.
B Only model updates are shared.



Privacy Concern for Federated Learning

.21 Can federated learning actually
o preserve data privacy?
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Privacy Attacks in Federated Learning

Privacy Leakage Possibilities:
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m Differential Privacy Federated Learning

W Secure Aggregation B Participants collaboratively train models.

B Participant data remains local.
B Only model updates are shared.



Model Inversion Attack
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Linear Leakage

“Linear leakage” can reconstruct its inputs from gradients [5].
®m Need knowledge about the target’s data distribution ¢.
¢ Can be estimated by an auxiliary dataset D, -
m Craft a two-layer attack module according to ¢@. One neuron
B Each row vector (neuron) can reconstruct one sample. One reconstruction!

wﬂ > > vW1(i+1)L B VW1(i)L Wﬂ
‘ V191(1'+1)L _ Vbl(i)L
M\ v LoV : r1y

Wi()

> F v
Voigenl = Voul { I

‘ ; : Reconstructed
Samples

Input Samples  FC 1 FC 2

[1] Fowl, Liam, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. "Robbing the fed: Directly obtaining private data in federated learning with modified models." arXiv preprint
arXiv:2110.13057 (2021).
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Attack via Model Crafting

Craft a two-linear layer attack module.
Insert the attack module in front of the original architecture.

FUENPT —

Input Samples Original Model FL Training

1
r==rF--
]
Lot

| get your private

Sample local training samples!
Reconstruct/on’
Iy H I [ =t . /‘\
Input Samples Attack Module Qriginal Model Gr@91€NtS FL Training

VIRGINIA
TECH



Separate the Victim from Others

Can we achieve targeted attack? (Bypass secure aggregation)
We use zero gradient module to separate the victim from others.

1,whenx = 0
0O,whenx <0

x,whenx =0

u ReLU(x) = {O whenx <0’

and its gradient satifies ReLU'(x) = {

m Zero out gradient by forcing the weight Wand bias b to be negative.
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Attack Flow

MedLeak is a two-phase attack: including the attack preparation and input

reconstruction.
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Attack Preparation

The first attack phase is conducted offline by the server to craft the adversarial
attack modules including linear leakage & zero gradient.
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Input Reconstruction

In the second phase, the server reverse the aggregated model updates back the
target’s local training samples.
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Implementation

Experiment Settings
B Medical Image: COVIDx CXR-4, Kaggle Brain Tumor MRI, and MedMNIST datasets.
B Medical Text: MedAbstract dataset.

m FL client number: 5 to 30. | e . W
B Local training: 1 to 5 rounds. i‘ ‘l H ! P 3
Evaluation metrics ' -
B Peak signal-to-noise ratio (PSNR) score: | AP |

el 1) |

W Structural 5|m|lar|ty mdex measure (SSIM) score: psnr:100.69 PSNR: 105.14 PSNR: 110.32 PSNR: 120.96

2y +¢1) (20xy+C2) SSIM: 0.99  SSIM: 0.99  SSIM: 0.99  SSIM: 0.99
(MF+U5+c1) (0% +05+C1) Image Reconstruction Samples

o SSIM(x,y) =

B Reconstruction successful rate and attack time.
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Reconstruction Examples

We select one batch of 36 images from the Kaggle Brain Tumor MRI dataset.

Original images are on the left, and reconstructed ones are on the right.

B 34 out of 36 images were successfully reconstructed!
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Reconstruction Results

Reconstruction performance on the COVIDx CXR-4 dataset over different
reconstruction batch sizes.

B Our attack can reconstruct hundreds of samples simultaneously with decent
reconstruction rates and quantitative scores.

B Our attack can be accomplished within a few seconds.

Batch Dataset Time (in
Slze sec)

COVIDx CXR-4  224x224 0.95 121.75 0.96 6.022
200 COVIDx CXR-4 224x224 0.89 112.66 0.99 7.003
300 COVIDxCXR-4 224x224 0.88 105.12 0.96 8.121
400 COVIDx CXR-4 224x224 0.86 97.30 0.99 8.762
500 COVIDxCXR-4 224x224 0.81 95.86 0.99 9.763
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Medical Downstream Tasks

We conducted a binary classification task (COVID-19 detection) on the actual and
recovered images with a pre-trained ViT-S model.

B We evaluated the classification performance on common ML evaluation metrics.

B Recovered images achieve nearly the same performance as original ones.

ol [AEL] [AEE

Original Images Reconstructed Images Binary COVID Classifier
 Model | Image | AUPR | TNR | TPR | ACC | AUC _
ViT-S original  0.9375 0.80 0.857 0.829 0.905

(SSL)  recovered 0.9207 0.90 0.719 0.805 0.919
ViT-S original  0.9745 0.97 0.931 0.953 0.969
(Finetuned) recovered 0.9653  0.886 0.938 0.912 0.966



Medical Text Recovery

Medical text data contains a huge amount of private personal records.

B We targeted the Med Abstract dataset [6], which consists of 14438 medical abstracts
(each has a few hundred words) describing the patients’ health conditions in five

different classes. Infection during chronic epidural catheterization: diagnosis

: : and treatment. A potentially serious complication of long-
Evaluatlon metrics term epidural catheterization in cancer patients is infection.

® Word error rate (WER) The early signs of infection were studied in 350 patients in
whom long-term epidural catheters were inserted...

m Reconstruction rate and attack time. : _ — —————
Infection during chronic epidural catheterization: diagnosis

B t h M and treatment. A potentially serious complication of long-
atc ax term epidural catheterization in cancer patients is infection.
Size Len The early signs of infection were studied in 350 patients in

whom long-term epidural catheters were inserted...
100 200 0.7550 0.0047 1.058
300 0.7585 0.0052 1.514

WER:0.0052
Text Reconstruction Sample

[2] Tim Schopf, Daniel Braun, and Florian Matthes. 2023. Evaluating Unsupervised Text Classification: Zero-Shot and Similarity-Based Approaches. In Proceedings of the 2022 6th
International Conference on Natural Language Processing and Information Retrieval (Bangkok, Thailand) (NLPIR ’22). Association for Computing Machinery, New York, NY, USA, 6-15.



Summary

MedLeak is a novel model inversion attacks (MIA) that challenge the
fundamental privacy-preserving property of the FL systems.

B The attack can efficiently and accurately reconstruct site-specific medical images and
text records.

B The existing secure aggregation mechanism is ineffective against this advanced MIA.
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https://shishishi123.github.io/files/MedLeak_25.pdf

Thank You!

Questions?
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